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Se.1 Wold's model for knowledge.

Scientific knowledge, as distinguished from every-day knowledge, is
characterized by the clear distinction between theoretical and empirical aspects.
Because the distrinction between the two cannnot be part of the theoretical or the
empirical, as a third element of the model for scientific knowledge the frame of
reference has to be introduced. The frame of reference, formulated (more ore
less) in every-day language, contains a mixture of theoretical ("T") and empirical
("E") contents, and is shown as a rectangle in the small graph that is taken from

Wold (1969):

Eq.01 T  E

Within the frame of reference, T and E are kept apart in order to prove
that they match. Matching (denoted by the double-headed arrow) means that
conclusions can be drawn from T about E (deduction) and from E about T (in-
duction). The process of matching E and T is the model validation an can be
understood as a general description of the job of science (Cronbach & Meehl 1955,
Wold 1969, Bentler 1978). Matching E and T may involve a reduction of the range
of observations E explained by the theory, which is adverse to the basic esthe-
tical qualities of theories: A theory should be as simple, elegant, consistent and

general as possible.

Sc.11 Levels of theory and data

The process of matching becomes more transparent and controllable when

the rigid distinction between E, T, and frame of reference is relaxed in favour of
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Figure 1
Matching between different levels of theorical and empirical knowledge.
Diagram Level Elements Statements
T1 SES —e 1Q substantive concepts, causal,
e Environment —* theory hypotheses functional,
correlational
T2 E ; C mathematical random functional
= 1 model variables correlational
E3 Q aggregated compound correlational
\ / data variables, (functional)
(numbers)
RT ///<§;;3j
A
E2 1 X 1J x2|x3|ylly2]zl]z2 %}J data numbers correlational
[ Ne—
E1l 0000 observations observational verbal
units
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more levels. Five levels T1, T2, E3, E2, E1 may be distinguished, with a match-
ing process between each pair of neighouring levels, as shown in Figure 1. Each

level has its own language, with its own primitive elements, syntax and semantics.

Ti is the level of substantive theory. The elements of the theory are
concepts (constructs). The syntax which decides which elements are put toge-
ther to a correct statement is the syntax of a natural language like German or
English. The semantics of a statement is determined within the frame of reference
of the whole model, in which also the concepts are defined and limited to a meaning
which may be different from every-day meaning. What is depicted in the top of
Fg.01 is the theoretical statement that the sociceconomic status (SES) of the
parents has a direct influence on the intellectual abilities (IQ) of the children, as
well as an indirect influence which is meditated by the learning environment at

home.

T2 is the level of a mathematical-statistical model. The elements are
random variables, here denoted by E,n,l. The syntax is the algebra of expec-
tations and linear algebra. The meaning of model T2 is given by the correspon-
dence to the substantive theory T1l. When limited to path models with latent var-
iables, the elements can be inner and outer variables, inner and outer residuals,

and the syntax controls how to formulate correct equations.

El is the level of observations. The elements are observational units
like individuals, or countries, or time points. The statements on this level are
natural-language statements about the behavior of the units. E2 is the level of

data. The elements are real numbers. The mapping of behaviour on numbers is
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called measurement. E3 is the level of functions of the data. The elements are
real numbers, again, but they are formed as functions of the measured data.

This can include compound variables, or estimation functions for parameters.

The five levels (the number five has some arbitrariness) form a chain,
and each member has to link up with and to adjust to its neighbour. The mathe-
matical model T2 must represent as completely as possible the substantive theory
T1. The statistical function on the level E3 must be determined from the data on
E2 so as to be best estimators of the model variables on T2. The data E2 must be
gathered from the level E1 so as to be informative for a comprehensive estimation
(on E3) of the latent variables (on T2) which stand for the constructs (on level

T1).

Residuals. The matching of E and T is never perfect, and there
remain unexplained parts on both sides. The deductive specialization of Eq.01
shows the empirical content as being partly a function of the theoretical content
and partly unexplainable by the theory. The formal notation is:

Eq.02a E=E(T) +e ,

and the notation in plain words:

Eq.02b data = systematic part + residual part

Eq.02¢c data = fit + rest

The right-hand side of Eq.02 is often called the model, in a narrower sense. The
residual € may be interpreted as measurement error, prediction error, sample
fluctuation, or "systematic" variation which is left out from the systematic part
because it related only to small and specific parts of the observation (unique

variation, specification error).
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The inductive specialization of Eq.01 shows the theoretical content as
being partly a function of the observation and partly unobserved:
Eq.03 T =T(E) +&
The residual & may be interpreted as theoretical surplus or empirical lack of the
model. If, for example, T is the theoretical concept of intelligence, and E is an
intelligence test, than T(E) is the IQ and & is that what the test fails to measure,

which can be understood as the lack of validity of the test.

In the process of model building the researcher tries to minimize € and 6,

to extend E, and to simplify T.

The notion of model is found to be used with different ranges. Some
scientists set the concept of model identical to what here is called T, or E(T);
some call the left-hand side of Eq.02 the model which then is contrasted to the
data; some call Eq.02 together with Eq.03 a model. Wold's notion of model goes

beyond this in that he includes the frame of reference into the notion of a model.
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Sc.12 Causality and latent variables

Time, space and causality are the basic categories for our understanding
of the world. The development of science in the past centuries has not undercut
the the usage of the concepts of time, space and causality in every-day language,
and even scientists use these concepts. Geographers use the concept of space as
continuous and three-dimensional, even if physicists talk of bent space, and his-
torian would not change their notion of time, if theoretical physistics would tell
them that time runs unsteadily, jerkily, or even backwards. Empirical observa-

tions have lead physicist to extend the concepts of time and space.

Causality . The notion of causality has taken a different history.
Assaults on the concept of causality came from philosophical consideration, not
from empirical findings, and it came in form of an anathema and prohibition sign.
Basically, the rejection of the concept of causality came from William of Occam's
principle of parsimony: Pluralitas non est ponenda sine necessicate. Taking the
philosophical objections into consideration, the usage of causal notion has been
reestablished in the fifties by Lazarsfeld, Wold and Simon (cf. Bernert 1983), and
it was mainly for practical reasons that they introduced causal terminology. A
relation X=f(Y) does not become better or richer or more powerful if a causal inter-
pretation is added, but more understandable. Whether the notion of cause-effect
relationship can be applied to the relation of latent (LVs) and manifest variables

(MVs), will be considered in this chapter.

Cause and effect are two different things. No thing can be the cause of

itself. When I "compel myself" to write a paper, I have introduced the distinction
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between my willing mind and my weak flesh, two different things. Whether mind

and body really are different entities, is a question left to philosophers.

By having more than just the two levels of latent and manifest variables,
the problems to be addressed in this chapter become more clear. A model with
several hierarchical levels of LVs is presented by Noonan (this volume). He
distinguishes two types of relationships between LVs, the hierarchical and the cau-
sal-predictive relationships. Are the hierarchical relations causal or not, are the
variables involved in a hierarchical relationship "different things", i.e. "things"

at all?

Theoretical constructs. Variables, whether latent or manifest, are
creatures of the human mind, constructions which are found helpful to order the
chaos of sensational impressions. Some of these constructions are merely mathe-
matical constructions and can be removed from a model without loss of predictive
power. Others can not be removed in this sense, and these variables are called
theoretical constructs (Maccorquodale & Meehl 1948, Falter 1977, Falter & Lohmdl-
ler 1982). As an example may serve a canonical correlation model for ten manifest
predictors x and ten manifest predictands y, which are transformed into ten
latent predictors E and ten latent predictands m. For the sake of argument,
assume that two canonical correlation coefficients are of remarkable size, and the
other eight correlations are neglegible. Then the eight last dimensions of E and n
can be retained to ease the algebraic treatment of the model, but can also be re-
moved without loss of predictive power. The first two dimensions, however, can
not be removed, and these two dimensions are empirical constructs or even theo-

retical constructs, if they can be interpreted and named in the framework of a
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substantive theory. Latent variables which according to this criterion are not
theoretical constructs are not thus different from their indicators that they are
"different things" and that they can enter a cause-effect relationship between

LVs and MVs.

Dispositional terms. The researcher has to decide which one is the
"real thing", the MV or the LV, or the LV of which level of a hierarchy. In the
social sciences the latent variables often denote dispositions. Examples for dis-
positions of individuals are intelligence, extraversion, party identification, ano-
mia. The manifest behavior then can be understood as being caused --jnter alij--
by the disposition, i.e. solving a cognitive task requires intelligence, adressing
unkown people requires some sort of extraversion, etc. In case the LVs are the-
oretical constructs and dispositional terms it seems appropriate to apply the real-
istic (not a ontological) interpretation to the LVs and to interpret the LVs as

causes of the MVs.

No question, if the LVs can be understood as causes of the MVs, they can
also be understood as causes of each other, and a causal interpretation can be
applied to the inner part of a LV path model. This, however, becomes difficult if
a LV is not a theoretical construct, but merely an intervening variable, a trans-
formation or collection of MVs, a basket full of candidates for a cause-effect rela-
tionship, a mixed bag of MVs whit suspected explanaotry power, a typical case

where PLS mode B weight estimation is advised.
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Se.2 Steps of model building

The process of model building can be described as a three-step proce-
dure, compromising (i) the model specification, (ii) estimation of unknowns, and

(iii) model evaluation.

Model specification includes at least two decisions, the first about the
empirical phenomena to be explained, and the second about the theoretical form of
the explanation. The specification of the theoretical content of the model may be
more or less rigorous. We will focus on models which require a statistical treat-
ment, i.e. which are on the one hand specified so far that a formal treatment is
possible, but on the other hand are non-deterministic. The elements of a model of
this type may include in the theoretical part manifest and latent variables, which
are specified with respect to the total distribution or only to the conditional ex-

pectations.

Model estimatiom may require additional assumptions which have no
counterpart in the first, substantive-oriented level of the theoretical model part.
Estimation methods like least squares and maximum likelihood can be characterized

in terms of robustness, availability, and precision of resulting estimates.

Model evaluation , in its classical form, requires a sample of indepen-
dent observations on a completely specified distribution. The evaluation may in-
volve the model as a whole or single parameters (standard errors). In Sc.3 less

demanding evaluation methods will be discussed.
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Se.21 Specification of the data

Observatiomal units. The phenomena to be explained by the model can

be the data as observed, say x n for k=1..K attributes of n=1..N observational

k,

units, or an aggregation of the data, say the covariances s k,1=1..K. This

kl’
choice includes a decision about the character of the observational units: If the
observational units are considered to be genuinely different, with interpretable
individual differences, like the children in a classroom (the one child is known to
be the primus and the other the clown) and the years in an economic time series
(the one year is known to be the oil crisis and the other the "1968 cultural revo-
lution"), then the observational units must be specified to be part of the pheno-
menon under exploration. If, however, the observational units are considered to
be replication of one and the same experiment, without any specific distinctions or
individual differences, all being identically distributed, like the repeated throw

of a die, then one can sum over the observational units without losing any infor-

mation of substantive interest.

Cases vs. replications. In the first type of data, the observational
units are called cases, they are specified by the model builder, and the model
must provide certain unkowns or incidental parameters or "factor scores'" accoun-
ting for the individual differences; in the second type the units are mere repli-
cations, anonymous sample points, unspecified. The distinction between "cases"
and "replications" introduced in this way points, of course, to the extremes of a
dimension with several intermediate steps of more or less specified, less or more

randomly chosen observational units.
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Applied vs. general science. The distinction between cases and re-
plications corresponds to two types of science, applied and general. A problem of
general psychology, for example, is the dependence of school success on intelli-
gence, which is stated so as to apply to specified population and not to a specific
individual. The corresponding problem of applied psychology is the prediction of
school success of the primus and the classroom-clown when their 1Qs are known to
be 120 and 100 points, respectively. The individual-psychology problem presumes
that --on the level of general psychology-- it has been established that a relation
between intelligence and school success exists. Hence, the individual psychology
problem includes as a subproblem the general psychology problem, and not the

other way round.

Example. In order to demonstrate the consequences of the distinction
between cases and replications, applied and general science, the statistical methods
of principal component analysis and factor analysis may serve as examples. The
not-completely-specified form of the linear model which is common for both meth-
ods is:

Eqg.21 Xy = ].n].kgj TEL s

where the E,]. denote latent variables, the e, residual variables, and the coeffi-

k
cients njk the so-called loadings. The index n for observational units does not
occur in Eq.21 which demonstrates that it represents a general, not an applied
model. Additional specifications on the first and second moments of the right-
-hand variables in Eq.21 lead to the common factor model. The model Eq.21 is re-
-stated on the individual level:

Eq.22 *kn © 2]'{I'jkgjn * €kn

Now there are two sorts of unknowns on the right-hand side of Eq.22, the para-

meters njk as before which account for the structural relations between the vari-
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ables, and the unknowns which carry the index n, the LV scores gjn and the
residual scores €xn* Knowing only the distribution and the moments of these va-
riables instead of the the scores, one would be unable to reconstruct the observed
values Xpn

The comparison of Eq.21 and Eq.22 demonstrates that more fundamental
than the specification of the model is the specification of the data, the left-hand
side of both equations. Indices which happen to appear on the data-side of the
equation have also to show up on the right-hand side, the model side. If the
observational units are considered to be more than replications, the researcher
has to specify them by including the index n on the left-hand side, and conse-

quently he has to put up a systematic model part on the right-hand side which

includes also the case index.

The problem of specifying the data becomes more complex -- and perhaps
even more clear -- when there are three sets of indices, say units, time points
and attributes. Then two index sets may be considered as specified and knwon,

and one as random and unspecified. For more details see Sc.4.
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Se.3 kiodel evaluatiom

Model evaluation should make use of not more than what as been assumed
when specifying the model and the data. The most critical assumption that leads
to a parting of the way is related to the distribution of the variables. If the
distribution has been fully specified, maximum likelihood estimates of the model
parameters can be obtained, and likelihood ration tests can be performed, at least
for some simple models. If no distributions are made for the estimation of the
model, it is nonsense to intoduce these for the model evaluation. From an array of
distribution-free methods we name blindfolding, bootstrapping, jackknifing and
perturbation. The methods are different with respect to their assumption and
their sensibility. The critical assumptions are independance of observations,

identical but unspecified distributions, and known zero point of scale of variables.
Se.3.1 Distribution -free evaluation methods

Perturbation . Suppose a set of parameters P has been estimated from
a data set X, and the question is how strong small changes in X influence the
consequent changes in P. Let s(X) and s(P) denotes the Euclidean lengths,
s(X)=/Zixf, and ei~N(0,s(X)). A new "perturbated" data set is created by
adding a random error, xi*—ximei, where a is a small number (say one percent)
and the new data set has the variation s(X*) = (1+a)s(X), and a new set of para-
meters P* is estimated from X*. If the ratio s(P-P*)/s(P) is close to a, this is an
indication of stable results. Belsley (1984) reports a small artificial data set
where a 1% change in the data produced a 40% change in the parameters, clearly a

demonstration of unreliable results. As Belsley points out, the critical assumption
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is wether the data are treated as raw values or as deviations from their means. If

the means are removed, results become smooth.

Bootstrapping implies the assumption that the residuals are inde-
pendent. If they are independent, they can be exchanged without disturbing the
estimates. Let be given a time series Vi t=1950..1980, and the model yt=6yt_1+et.
Now a new time series x,;" is created by exchanging residuals, say y"l‘961
by1960+e1971 and yI971 = by1970+e1961, or by a random exchange of residuals.
Than the model is reestimated on the new time series y,E", giving a new estimate b*
and new residuals e,:‘. The redistribution of resiudals and reestimation of the
model is continued until a stabil estimate of B is established. Clearly, the boot-

strapping method requires the assumption of independence of residuals.

Blindfolding means to omit one part of the data matrix while estimating
the parameters from the remaining data, and then to reconstruct the omitted part
by the estimated parameters. This procedure of omitting and reconstructing is
repeated, until each data point is omitted and reconstructed once. The blind-
folding technique provides two types of results, (a) the generalized crossvali‘da—
tion measures as an evaluation of the model as a whole, and (b) the jackknife
standard errors for the single parameter estimates. Both types of results are
helpful in deciding on the quality and relevance of a model. The blindfolding tech-
nique requires no distributional assumptions, so it fits the PLS technique "like

hand in glove" (Wold 1981, Wold and Apel 1982).

The jackknife technigque was developed to construct the distribution
of parameter estimates without assumptions on the distribution of the variables

involved (Quenouille, Tukey). This is done by estimating the parameters N times
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in a data set with N observations, each time cutting off just one observation. The
N estimates for the same parameter, then, are used to compute the mean, the

standard deviation, and other distributional characteristics of the parameters.

The generalized crossvealidation measures indicate how well the ob-
served values can be reconstructed by the model and its parameters. Standard
crossvalidation utilizes one data set to estimate the parameters and another data
set to test the validity of the estimates. For example, regression coefficients and
R"i are estimated in the first data set; then the regression coefficients are applied
to the second data set, and the sguared correlation R%(y;sr) is computed, and
usually the shrinkage phenomenon R%<Ri is observed (see Stone 1974, and Win-
teler 1983 for an counterexample). In generalized crossvalidation, however, the

blindfolding technique is used to split the data set at hand repeatedly into an

estimation set and a test set which may contain a single data point only.

PRE - Proportional reduction of error. A general principle for the
construction of measures of predictive power is based on the proportional reduc-
tion of error (Guttman 1941, Goodman & Kruskal 1954). This principle implies the
comparison of errors made under two prediction rules. The rulel prediction
(often called the trivial prediction) is based on the distribution of the predictand
y alone, without any knowledge of the predictors x. The rulel prediction for
continous variables is the mean y or the jackknifed mean §(_i). The rule2 pre-
diction is based on the joint distribution of x and y. The definition of the error
depends on the scale quality of the variables. If y is a categorical variable, the
error is simply the number of misclassifications. If y is continuous, the square
sum of the differences between observed and predicted values is an appropriate

error term, zn(yn—frn)z. The standard formula for PRE measures is:
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Eq.31 PRE =1 - (rule2 error) / (rulel error)

For the (descriptive) multiple regression model, the rulel prediction is the mean
of y, and the rulel error is the variance of y; the rule2 prediction is §, and the
rule2 error is the variance of the residual variable e; and the PRE measure is
identical to the squared multiple correlation.

Eq.32 PRE =1 - sé/s}zf = (s;—sé)/s; = var(y)/var(y) = R?

Because var(y) is the observed variance and var(e) is the error variance in the

regression model, the PRE coefficient is noted shortly as 1-E/O.

SG test. If both prediction rules include the blindfolding device, the
PRE measures belong to the realm of methods proposed by Stone (1974) and Geis-
ser (1974). The title of Stone's article with translation: Cross-validatory (= using
blindfolding) choice (=estimation) and assessment (=testing) of statistical predic-
tions. Stone proposes to use the deletion procedure for both the estimation of the
unkowns of a model and the test of the predictive validity of that model. Geisser
applies his "Predictive Sample Reuse Methode" only for the estimation, but does it
by deleting more than one case at time.

If with rule2 all of the errors made under rulel can be eliminated, than
PRE=1, and the prediction rule (prediction model) is valid. PRE=0 indicates that
ruleZ has no relevance for the data at hand and that rule2 is no improvement over
rulel. If PRE is negative, the non-blindfolded parts of the data matrix are mis-
leading when guessing the blindfolded parts, and in general the rule2 is misleading
for the prediction of the data. This can happen when the parameter estimates for
the rule2 are unstable or when the data set is not homogenous (i.e. influenced by

outliers) with respect to the hypothesized model.
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5c.3.2 Predictive testing

The blindfolding device can be applied in very different ways and can be
used for different sorts of inference. This will be demonstrated on a very common
model, a multiple regression model. The predictors are at the beginning consi-
dered as directly observed, later as weighted aggregates (LVs) of observed
variables (MVs). Three aspects of regression will be distinguished here, called
description, forecast, and generalization, and corresponding PRE measures will
be presented. The three models generate rule2 predictions, and the respective
residual sums of squares will be called DRESS, FRESS, and GRESS. Two differ-
ent rulel residual sums of squares will be entertained, called RESS0 and RESS1.
FRESS, GRESS, and RESS1 are based on different applications of blindfolding,

whereas DRESS and RESS( are theusual OLSresidualssuchthatR2=1-DRESS /RESS0.

The multiple regression model to be investigated relates the predictor
values X = [Xjn] (j=1..J predictor variables, n=1..N cases) to the predictand
values y = [yn] by the model
Eq.40 Y = Z]. bjxjn te
where e = [en] is the residual variable and b = [b].] is the vector of regression
coefficients. If the variables are not centered to zero mean, the first variable has
to be taken as unit, x1n=1 for all n, and consequently bl will be the regression

constant.

The different applications of the blindfolding vary along the dimension
"Which model parameters and which data points do we take as known and what

must be reestimated for each blindfolding sample?" With respect to the data points
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which are blindfolded or not we distinguish three cases:

(D.) Description: Nothing is blindfolded.

(F.) Forecast: The predictand value Yy is blindfolded.

(G.) Generalization: Both xji and y,; are blindfolded.

With respect to the model parameters and the moments of the variables we distin-

guish the cases:

(P0) Only the regression parameters are unknown.
(P1)  The mean y is known.
(P2) The means ;{j are known.

(P3) The weights for forming the predictor LVs are known.

Whether a case is omitted totally or only partly from the data matrix de-
pends on the intended conclusions. We will distinguish the description, the fore-
cast, and the generalization approach. With respect to Figure 2, in the forecast
approach only the double-shaded data point i is blindfolded, whereas in the
generalization approach all shaded data points X and y; are omitted.

]

Figure 2
Blindfolding for multiple regression.

L@N|
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RESS0 amd RESS1 - Trivial Prediction error. As rulel error terms,
two residual sums of squares will be defined. RESS0 is the residual sum of
squares when the mean y of y is taken as predictor of y;- The residual is
Eqg.34 & YTy
and the residual sum of squares, called RESS0, is identical to the variance of y:

= 2
Eq.35 RESS0 = (1/N) ] e?
RESS1 is the residual sum of squares when the mean 3_7_1 of y is taken as predictor
of Vi but when this mean is computed, i is omitted. It can be demonstrated that
Eq. 36 eJ,i =V - (N/(N-1))y ,
and that RESS0 und RESS1 are related by
Eq.37 RESS1 = (N/(N-1))? RESSO .
Hence RESSO<RESS1. Notice that RESS0 implies an assumption, namely P1, and

this assumption pays off in a smaller error term.

DRESS - Description error. The descriptive regression model makes
use of the total data sample (X,y) when estimating the parameters. The residuals
are denoted by en; the residual sum of squares associated with this model is:
Eq.38 DRESS = (1/N) ] ) n -

FRESS - Forecast error. In the forecast approach it is assumed that
N-1 cases are known totally, and that from an Nth case only the predictor but not
the predictand values are known. In order to make the most efficient use of the
information at hand when estimating the regression parameters, b'= m&xm;{i, the
inverse of MXX=(XX')/N should be based on the total sample, but the predictor-
-predictand relation can be based only on N-1 cases, myx,—i’ where the subsecript

-1 indicates that the ith case is omitted. When the actual value of vy becomes
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known, the residual eF,i are calculated. Notice that the value y; was not used
when the parameters b_i where estimated and the prediction ?F,i was derived.
The real-world forecasting situation can be simulated N times, by blindfolding
each value y; once and estimating the parameters and the prediction. The resi-

dual sum of squares is:

= 2
Eq.39 FRESS = (1/N) ), eb ;-

GRESS - Generalization error. In the generalization approach it is
stipulated that N-1 cases are known and the estimates are to be generalized on an
Nth case. In order to test this stipulation, each case is omitted once from the
data, an both the predictor, and the predictand, values are blindfolded. With

-1

case i blindfolded, the regression parameters are estimated by b'Gl i° m'_iM_i. It

can be shown that the DRESS-residuals and the GRESS-residuals are related by
Eq.40 eG,i = (1/(l-qi)) eD,i ,

where q; is the normed Mahalanobis distance, a function of the predictor values of
i. The residual sum of squares for the generalization approach is:

Eq.41 GRESS = (1/N) ], et _. .

1

PRE-coefficients Five PRE-coefficients, based on the error sums de-

fined above, are defined now:

Eq. 42 Q2(D0) = 1 - DRESS/RESS0
Q2(F1) = 1 - FRESS/RESS1
Q2(F0) = 1 - FRESS/RESS0
Q2(G1l) = 1 - GRESS/RESS1
Q2(G0) = 1 - GRESS/RESS0
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The first coefficient Q2(D0) is identical to the squared multiple correlation coef-
ficient in case the variables are centered to zero mean. The ordering of the five
coefficients is roughly according to the information used for their estimation, and

hence according to the expected order of magnitude.

Examples. The behaviour of Q2 in different data sets, with different
model specification, and with different blindfolding approaches is demonstrated in
Table 1. The first data set is analysed under a model with location parameter
(row #1) and, centered to zero mean, without location parameter (row #2). If the
avarage of y is considered as a priori known and exempted from estimation (row
#2), then the model has predictive relevance, whereas the model of row #1 is not
predictive. A close inspection of the data reveals that the all-cases results are
strongly influenced by two single cases. If the tenth case is omitted, R? jumps
from 0.77 to 0.99, and if the nineth case is omitted, the regression parameters

change completely.

Table 1

How predictive validity changes with data, model, and blindfolding approach

Data set and model DO FO GO F1 Gl
Gaensslen & Schubdé (197 )

#1 Raw data 77 -.04 -.44 .16 -.16

#2 Centered data, no regression constant 77 .30 .41 .43 .93

Economic sanctions (Wold 1984)

#3 4 MV predictors .78 .07 -.70 .24 -.04
#4 2 MV predictors .66 .22 .30 .37 .44
#5 2 LV predictors, all-cases w., no constant .80 .51 .69 .61 .75
# 2 LV predictors, all-cases w., with const. .80 .38 .60 .50 .67
#7 2 LV predictors, without-1 w., no constant - -.40 -.41 .24 .23
#8 2 LV predictors, without-1 w., with const. - -.40 -.41 .23 .23

Forging force
#9 Three predictors .41 -.44 .26 -.32 .20
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The second data set is analysed with 4 (row #3) and with 2 predictors
(row #4). With 2 predictors the model is predictive, and with 4 it is not: R?2
increases with increasing number of predictors, but Q2 drops in this case, because
the additional parameters can not be estimated reliably. In rows #1 and #3 the
rank order of the five coefficients is as expected, GO<F0 and G1<F1, whereas the
other models show lower validities for the forecast than for the generalization
approach. This is especially so for the third data set (row #9); even if the
generalization approach uses less information from the data than the forecast ap-

proach, the prediction is better.

LV predictors. The two predictors of the successful model #4 in Table
1 are, in fact, sign-weighted sums of 27 observed predictors; so one can under-
stand this model as one with 2 LV predictors and 27 MV predictors, where the
weights Wy were a priori chosen as -1 or +1.
Eq.43 X]. = ij wkxkj, Vi
The weights were exempted from estimation and blindfolding. Now, in the next

two steps on the way from a multiple regression to an LV path model, the weights

are not longer treated as known.

All-cases LV weights. Following PLS Mode A technique, the LV weights
are taken proportional to the correlation of MV predictors Xy with predictand va-
riable y,

Eq. 44 Wy @ cor(xk;y) ,
and the LVs are scaled to zero mean and unit variance. In this step, we use all
cases for the estimation of the LV weights and the scaling of the LVs, and execute

the blindfolding procedure only on the regression parameters. As the LVs have



ICUS XIII, II, JBL -23

zero mean, the constant in the regression model must come out as zero, and could
be omitted. However, even if the LVs are standardized over all N cases, they are
not standardized in the blindfolded N-1 data set, and results are different for
models with and without regression constant, see Table 1, rows #5 and #6. As
compared to the MV predictor model (row #4), R? is higher because the weights
from Eq.44 are "better" than the sign weights. The PRE measures for this model
vary between 0.38 and 0.75, depending on the choice of forecasting or generali-
zation approach, RESS0 or RESS1, constant included or not. But under all these

variations the PRE is positive, indicating that the model has predictive validity .

Without-ome LV weights. Now the LV weights are also subject to
blindfolding, and the correlation in Eq.44 is computed with one case omitted. As
the predictor LVs change their values due to the different weights, there is not a
unique R? but N different R?s. Also the scaling of the LVs becomes ambiguous,
and one has to decide whether the LVs are to be standardized over N or over N-1
cases. whether only the predictand or even the predictors are to be rescaled, and
whether the regression model should have a constant or not. For all the varia-
tions of the data and the model, the PRE measures Q2(F1) and Q2(G1l) vary from
0.08 to 0.36, and the most resonable results are reported in rows #7,8 of Table 1.
As compared to the all-cases weights, there is a sharp drop in the PRE, but never-
theless it is positive, and the additional 27 parameters (the weights) can be esti-
mated reliably from the data. Compared, however, to row #3, the two superfluous
predictors do harm to model. and the two additional regression parameters dis-

turb the prediction more than the 27 weights.
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Conclusion . It has been demonstrated that the predictive testing by
the blindfolding device is a flexible tool for the evaluation of the predictive models.
The model to be tested is not presumed to be true, but to have predictive power.
Consequently a negative tests result is implies not that the model is wrong, but
that the model is useless. Unlike perturbation analysis, the stability of the
results is not tested by adding something to the data (and it has to be specified
what form and distribution the added error should have), but by omitting given

data.

The blindfolding device requires no assumption about independent ob-
servations. The assumption that the data set is homogenous with respect to the
hypothesized model, i.e. that it has no outliers, can be tested, and the cases
which are contradictory to this assumption can be identified. The blindfolding
procedure is sensitive to scaling, in two respects: In very small data sets, it
makes a difference whether the LVs are standardized over N or over N-1 cases.
And in general, the regression constant can turn out to be the most volatile and

susceptible parameter.
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‘Sc.4 Three-way data models

Three-way data are ordered by three indices; for example, y may

ptr
denote the election outcome of a party p at election time point t in a region r, and
xgtr the number of employed, and unemployed, workers at time t in region r, If
theory is concerned only with the influence of unemployment categories (xg) on
voting outcome (yp) , time points or regions or both may be used as observational
units, and we have a two-way ordering of observations. In this case, the indices

p and g refer to "specified" coordinates of the data array, and t and r refer to

"unspecified" coordinates of replications.

It may, however, turn out that the time dimension taps a causal influence
of its own (see Falter). Then the time must be specified theoretically, the model
considers the variables th and ypt with regions as the only observational units,
and we have a two-way ordering of variables. As a general method for modelling
variables ordered in two ways and observed in one way (three-way or three-mode
data), the three-mode path analysis with latent variables can be used (Lohméller

and Wold 1980, Lohmoller 1984).
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