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Introduction

Richard Noonan's paper gives a comprehensive presentation which captures
a general theoretical model for school system evaluation, a set of
propositions about factors and processes influencing observed relations,
and the empirical test of a complex model. The paper also demonstrates
the use of hierarchically structured PLS models, which constitutes a
newly developed methodology for the analysis of large and complex

path models. It is an impressive piece of work. As it is impossible to
cover all parts of Noonan's paper, my comments will concentrate on two
aspects, namely (a) the set of general propositions about factors which
have an impact on empirical path modeling results, and (b) the estimation
of hierarchically structured PLS models. More specifically, my remarks

will be clustered around the following topics :

(1) Multiplicity and Effectivity Principle. I shall argue that both

propositions are not generally applicable because they refer to

special data constellations. Section 1 presents a counter-example.

(2) Specification Error. An important aspect missing from Noonan's

presentation is the notion of specification error. Section 2
discusses some implications of the specification error problem

in respect to Noonan's PLS analysis.

(3) Estimation of Hierarchical Structures. The statistical implementation

seems to be the most problematic aspect of the concept of hierarchical
structures. Section 3 presents an empirical example and examines

some peculiarities of Noonan's algorithm for estimating hierarchically
structured latent variables. Section 4 briefly describes two

alternative algorithms.
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1. Multiplicity and Effectivity Principle

Let me start with some brief remarks on the multiplicity principle and
the effectivity principle. The multiplicity principle states that the
total effect of a given cause variable is a function of the number of
paths through which the causal influence operates on a given criterion.
Closely related to this statement is the effectivity principle which
states that the total effect depends on the magnitude of the direct
effects making up the causal chains through which the indirect effects
operate. Both statements are closely related to basic principles of
path modeling. First, the total effect of a given variable is defined
as the direct effect (which may be zero) plus all indirect effects
operating through other variables in the system. Second, indirect
effects are defined as the product of the direct effects involved in
the associated causal chains. Clearly, if the direct effect of a given
variable is positive and if all indirect effects are also positive,
the total effect wil increase as a function of the number and
magnitude of indirect paths. However, this is only true if all direct
and indirect effects can be assumed to operate in the same direction.
So there arecounter-examples to Noonan's principles. Consider the

model depicted in Figure 1.

This example states that more drill will have a positive effect on

academically engaged time but a negative effect on attitude towards
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subject, while both intervening variables will have a positive effect
on cognitive achievement. Given that all path coefficients are, in
absolute valuue, equal to, say, 0.5, the total effect of the variable
DRILL is zero. It will be noted that there are, of course, many other
data constellations implying a zero total effect. The key feature of
the above example is the existence of contradicting effects; drill
influences achievement positively via academically engaged time, but
this positive effect is compensated by a negative indirect effect

operating through attitude towards subject.

Neither the multiplicity principle nor the effectivity principle, as
formulated by Noonan, take such contradicting influence structures
into account. Both propositions are not generally applicable, since
they refer to special data constellations, such as the effects of
home characteristics, where direct and indirect effects can be

assumed to operate in the same direction.

It may be noted that conflicting causal influences constitute an
important characteristic of school systems (and open systems in general),
a fact which has not been discussed in Noonan's paper. Noonan refers to
conflict among goals attributable to the way in which available resources
are allocated. It is argued here, however, that such conflict among goals
may also be established by contradicting causal influences, such as
unexpected or undesirable side effects. For example, there is not

necessarily an inherent conflict between the level of academically
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engaged time, attitude towards subject, and the level of cognitive
achievement. Rather, as illustrated in Figure 1, conflicts in this
domain may be established by conflicting causal influences of specific
characteristics and behaviors. The detection and analysis of
conflicting causal influences and particularly the analysis of
unexpected or undesirable side effects can be regarded as one of the

most important aspects of school system evaluation.

3. Specification Error

The seven propositions formulated by Noonan are concerned with factors and
processes influencing observed relations among student, teacher and school
variables. More specifically, the propositions deal with factors that

have an impact on empirical relations derived from path models. My major
criticism of this part of Noonan's paper is that the set of propositions
is incomplete. An important aspect missing from Noonan#s presentation is
the notion of specification error. Specification errors have profound
effects on empirical path modeling results and may severely bias
inferences about the existence or non-existence of causal effects.
Moreover, specification errors may occasionally produce ‘findings' which

are completely wrong.

All this is well known, and it is also widely recognized that path models
formulated and tested in educational research most likely involve
misspecifications. In practice, however, the consequences of specification
errors are largely ingnored. The following discussion deals with some
implications of the specification error problem in respect to Noonan's

PLS analysis and in terms of the application of path modeling techniques



Page 5

and the interpretation of empirical results. A useful typology of
specification errors has been developed by Deegan (1976). This typology

is reproduced in Table 1.

The classification shown in Table 1 was developed for single regression
equations. It is also applicable to more complex path models, however,

if it is assumed that linear-recursive models are employed. Then, each
model equation is equivalent to a simple regression equation and the
appropriate estimation procedure is Ordinary Least Squares (OLS) regression
applied to each model equation separately (see e.g. Land 1973). This is

the dominant path analysis technique in educational research. It is

also the technique employed in Noonan's PLS analysis for estimating

relations among latent variables.

The typology in Table 1 refers to two sources of specification errors,
namely (a) the inclusion of irrelevant variables, and (b) the omission
of relevant explanatory variables from a given model equation. It is
clear that this classification covers only a subset of possible
misspecifications. It may, in fact, be argued that linear models are
generally misspecified because rather imprecise theoretical expectations
are translated into much more precise statistical models which cannot be
expected to constitute a perfect representation of social processes.

In many cases, however, there is good reason to believe that linear
models render reasonably close approximations to reality, given that the

tested hypotheses are not fundamentally wrong. The above classification
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refers to such fundamental errors. A thorough and statistically rigorous
formal treatment of specification errors is to be found in the article by
Deegan (1976) referred to above and in most textbooks dealing with
regression and path analysis (see e.g. Duncan 1975). For the present
purposes it should, therefore, suffice to examine just one highly
simplified example. Let us assume that the basic model equation can be

formulated as :

(1) E(Y) = B1X1 + BZXZ + B3X3 ; B3 =0

The assumption B3= 0 means that X3 is a superfluous predictor variable.
That is, the model equation is overspecified and involves, in Deegan's
terminology, a Type A error. It can be readily shown, however, that OLS
regression applied to (1) yields 'unbiased' coefficient estimates, given
that the predictors are uncorrelated with the residual belonging to the
dependent variable Y. The statistical treatment of specification errors
is usually based on the distinction between 'true' or correctly specified

models and hypothesized models which may or may not be misspecified.

'Irrelevant' predictors are simply defined as variableswhich haveno effect
on a given criterion, while 'relevant' predictors are defined asvariables
having non-zero effects. From a theoretical point of view, thisdefinition
is quite unsatisfactory, but this issue will not be discussed here. Suffice
it to say that calculations on the basis of equation (1) would suggest
that the corresponding 'true' model would include just two explanatory
variables, namely X1 and X2. Now, a Type C error would occur if the

hypothesized model were given by :

(2) E(Y) = B’;X1 + B§X3
To simplify the presentation, three additional assumptions will be made:

(a) all variables are standardized to zero mean and unit variance, (b)
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X1 and X3 are uncorrelated, and (c) OLS point estimates obtained from (1)
are equal to the corresponding population parameters. The last assumption
means that sampling considerations will be discarded. It is evident that
inappropriate sampling can severely bias coefficient estimates,
irrespective of whether the tested model is correctly specified or
misspecified. On the basis of the above assumptions, the bias resulting

from equation (2) can be evaluated from the expressions :

BT = 31 + r1282
(3) . .
B3 =0 + r3282

where the r's denote the correlations between the included predictors and
and the omitted 'true' model predictor Xoe Equation (3) illustrates two
things. First, non-zero effect estimates are generally obtained for
irrelevant predictors (i.e. é§ # 0) and, second, the estimated effects
of included 'true' model predictors are generally biased (i.e. éf # 61).
The magnitude and the direction of the bias depends on the values and

the signs of the involved coefficients. ﬁT, for instance, may be an
overestimate or an underestimate of the 'true' model coefficient ﬁ1;
note that this includes the possibility that 67 is zero, or that ﬁ?

is negative while the correct effect estimate is positive.

Turning to substantive considerations of specification errors, the first
obvious question is which error type occurs most frequently in educational
research. Unfortunately, the most frequent type of specification error is
presumably Type C error. That is, empirical research in education probably
deals most often with models which are simultaneously overspecified and
underspecified. Much of the large-scale reserach in education, such as the

IEA Six-Subject-Survey, can be characterized as huge fishing expeditions
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where data are collected on hundreds of variables covering a large number
of dimensions in the hope of capturing something big and important. To be
sure, schooling is a highly complex social phenomenon, and research on
schooling therefore requires data collection on a fairly broad range of
dimensions. However, educational research is, in practice, rarely guided
by sufficiently clear theoretical expectations of relevant and irrelevant
aspects of schooling, and is virtually never guided by explicit a priori
conceptualizations of alternative models to be tested. As a consequence,
the educational researcher is faced with huge data sets which probably
contain a great deal of irrelevant information, but which nevertheless
constitute a limited data base in that relevant information is often
missing. In this situation, one basic task of the data analysis is to
identify factors which have no impact on specified criteria. In terms of
the application of path modeling techniques, a frequently used analysis
strategy is to start with fully recursive models, that is, with models
where all possible recursive relations are specified, and to apply
standard significance tests in order to identify irrelevant explanatory
variables. This approach can be criticized on several grounds. One aspect
is that classical significance tests require several fairly strong
assumptions on the distribution of residuals which are often highly
unrealistic. But even if distributional assumptions seem to be justified,
a general theoretical argument still applies, namely that this analysis
stategy requires the assumption that only Type A error is present. That
is, it must be assumed that each model equation involves all relevant
explanatory variables. If this cannot be assumed or, alternatively, if

it must be realistically assumed that Type C error is present, this
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approach is clearly nonsense, since statistically significant effects will
most likely be obtained for irrelevant predictor variables. In terms of
the above example, ﬁg will not only be non-zero, but may also turn out to

be highly significant.

To be sure, the general critique formulated above does not fully apply to
Noonan's paper. In fact, an important contribution of Noonan's presentation
is its emphasis on theory and the argument that theory is required at all
stages of research, from the data collection to the data analysis and the
interpretation of results. The theoretical part of his paper states very
clearly which factors are expected to have a direct influence on science
achievement, for example, and which factors are expected to exhibit indirect
effects only. It is to be noted, however, that the actual data analysis
described in Noonan's paper deviates from the theoretical model presented
earlier. For example, the macro-model equation for science achievement
involves constructs which were not assumed to have a direct effect on
science achievement (e.g. *SCHSTR, *TEASTR and *TEABEH). The corresponding
equation includes, in fact, all causally prior variables involved in the
macro-model, and Noonan's discussion of the corresponding results also
refers to standard significance tests. In short, Noonan's data analysis
has much in common with the general analysis strategy criticized above.
This does not mean, however, that a strictly confirmatory approach would
have been appropriate. In view of the theoretical knowledge available in
the field of school system evaluation, a compromise between exploratory
and confirmatory path modeling strategies is certainly required. The point
I want to make here is that the data analysis should incorporate explicit

considerations on possible misspecifications and their impact on given
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results. Of course, the 'true' model structure is not known, and formal
derivations are, at first glance, not very helpful for assessing the
influences of specification errors on specific results. Equation (3),
for instance, indicates that virtually everything can happen if a given
model involves Type C error; the estimated path coefficients may
constitute underestimates or overestimates and may even change signs

if the tested model is misspecified. It is argued here, however, that
it is often possible to arrive at reasonable theoretical speculations
about model misspecifications, such as speculations about omitted
explanatory variables and their interrelations with included variables,
and to incorporate such considerations into the interpretation of
results. As a matter of fact, Noonan's interpretation of the effect

of *TEABEH on science achievement constitutes an example of such
theoretical speculations. He argues that the direct effect of *TEABEH
reflectsan indirect effect operating via student learning behaviors
omitted from the tested model. In other words, Noonan refers to Type

C error involved in the model and speculates about relations between
the construct *TEABEH and omitted variables reflecting student behaviors.
Whereas it may well be plausible that the effect of *TEABEH on student
achievement reflects an important aspect of educational processes, it
is imperative to note that theoretically relevant student variables are
omitted from the model, and that this omission has several fundamental
implications in terms of theapplication and interpretation of path analysis
techniques. Among other things, this omission prohibits the use of
classical significance tests, unless it can reasonably be assumed that

the existing Type C error does not affect other parameter estimates.
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This assumption, however, appears to be fairly strong and therefore should
not be taken for granted; quite to the contrary, it would have seemed
appropriate to extend considerations of possible model misspecifications
to other model relations (e.g., the negative effect of curriculum on

science achievement).

All this is not to say that Noonan was unaware of the problems outlined
above. In fact, he implicitly refers to the problems of misspecifications
in several parts of his presentation (e.g., in his discussion of the
'Rules Principle'). The point I want to make is that these difficulties
should have been made explicit, all the more so, since little is

known about the effects of specification errors in PLS modeling. As the
PLS procedure heavily relies on regression-based methods, it can be
expected that the well-known results derived for conventional path
analysis techniques carry, at least in part, over to PLS models, but

in view of the importance of specification error problems, further

research in this field is clearly needed.



Page 12

4. Estimation of Hierarchical Structures

This section examines some conceptual and statistical aspects of Noonan's
algorithm for estimating hierarchically structured PLS models. As will be
shown below, Noonan's algorithm departs from key principles of the basic
PLS design. This has consequences in terms of the correspondence between

so called macro-models, which include hierarchically structured latent
variables (1lv's), and micro-models, which aim at an investigation of
particular model parts. The introduction of hierarchically structured lv's
requires some modifications of the basic PLS procedure, and it is therefore
not to be expected that macro-models and corresponding micro-models yield
numerically equivalent results. It is desirable, however, that macro-models
and corresponding micro-models generally imply similar conclusions in

terms of the relative importance of lower level lv's and in terms of the
relative importance of manifest variables making up specific constructs.
The following discussion deals with peculiarities of Noonan's procedure
which may lead to a substantive lack of correspondence between macro

and micro modeling results.

To illustrate possible differences between macro-models and corresponding
micro-models, the PLS model presented in Figure 2 will be used as an
empirical example. The model is based on data from the Classroom
Environment Study conducted by the International Association for the
Evaluation of Educational Achievement (IEA). A major aim of this study

is to examine relations among observed teacher behaviors, student
behaviors and student achievement (cf. Ryan 1981). The model shown in
Figure 2 is based on data from 65 fifth-grade mathematics classes

observed in an Asian country. A short description of the included
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constructs and the associated manifest variables is given in Table 2.

The model relates an observer rating of the percentage of academically
engaged students in class (ENGPCT) to four intervening constructs comprising
indicators of different types of teacher-to-student interactions. These
intervening constructs are related to two exogenous blocks labelled

as TPERC and ACTIVITY. TPERC involves two questionaire items reflecting
the teacher's perception of the average class abiltity at the beginning
of the observed learning unit. Note that the scaling of the manifest
variables implies a high value of TPERC if the teacher perceived the
class as of comparatively low ability. The block ACTIVITY involves two
observational indicators reflecting general activities (seatwork and
lecture) in which the classes were involved. ACTIVITY is scaled in such

a way that LECTURE is negatively weighted while SEATWRK is positively
weighted. A high value indicates, thus, that a comparatively large

amount of seatwork and a relatively small amount of lecturing activities
was observed. It may be noted that the two activity categories were found
to account, on the average, for 80 to 90 percent of all observed class
activities. It is not possible and for the present purposes not necessary
to describe the data collection and the data preparation procedures in
detail. It should suffice to note that each class was observed at six
lessons, and that the observations yielded about 5,000 data points per
class. For this reason, some data aggregation was necessary. In the
present case, the recorded teacher-to-student interactions were aggregated
to the teacher or class level by transforming the total frequencies with
which each interaction was observed to percentages of all coded
interactions. Hence, the manifest variable LE, for example, indicates the

percentage of all interactions classified as 'verbal lecture'. A similar
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procedure was used to aggregate the variable ENGPCT and the activity
categories included in the block ACTIVITY. The model shown in Figure 2
is, thus, based on highly aggregated observational data reflecting purely
quantitative aspects of classroom instruction. It is to be emphasised

that the presented model constitutes a simplified submodel taken from

more extensive PLS analyses. One simplifaction was to specify all
constructs as 'outward' blocks. The model is primarily intended to serve
as a numerical example and, therefore, no detailed interpretation will

be given.

Figure 3 displays a hierarchical model that corresponds to the PLS model
shown in Figure 2. The intervening blocks TEACH to MANAGE are summarized

by a higher order construct labelled as ACTIVE. This higher order construct
can be interpreted as ‘réflecting the extent to which the teacher was
actively involved in different types of classroom instruction. This
interpretation is based on the fact that the included interaction categories
accounted, on the average, for about 60 percent of all coded interactions
while the remaining 40 percent were usually due to student responses and,
to a largeportion, classified as 'silence/absence of interactions'. The
included interaction categories covered, therefore, nearly 100 percent of
the observed teacher initiated interactions. The hierarchical model
depicted in Figure 3 has been specified in accordance with two basic
pringiples noted by Noonan and Wold (1983: 284): (1) all influences on

a given hierarchy operate via lower level constructs, and (2) all
influences of lower: level lv's are summarized by thetop level construct;
i.e. it is assumed that no influences emanate from lower level Iv's

directly to variables outside the hierarchy. For comparative purposes,
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Figure 2 and Figure 3 display the estimated path coefficients, the R?-
values, and the total effects on ENGPCT. The coefficients displayed in
Figure 2 were estimated by the basic PLS procedure, and the coefficients
shown in Figure 3 were estimated by Noonan's algorithm, with ACTIVE
specified as an 'outward' block. It can be seen that the model results
differ in several respects. The most striking difference concerns the
Rz-value of ENGPCT; the R%*-value determined from the hierarchical model is
larger than the R2?-value obtained from the micro-model. Noonan states that
RZ-values of hierarchical PLS models are generally smaller than R?-
values determined from corresponding micro-models. The above example
demonstrates that this assertion is not generally true. A loss of
predictive power occurs with regard to the overall model results, however,
since the mean R%*-value of the hierarchical model is equal to 0.142 while
the mean R%*-value of the micro-model is equal to 0.173. This is because
the hierarchical model yields smaller R?-values for the intervening
constructs TFACH, QUEST and QUINT. In terms of the estimated effect
coefficients, a comparatively large difference is observed for the total
effect of TEACH on ENGPCT for example. The micro-model effect is close

to zero (-.026) while the macro-model yields a relatively strong

negative effect (-.110).

The differences alluded to above occur because Noonan's algorithm departs
from key features of the basic PLS procedure used to estimate the micro-
model. To show this, it is necessary to present some aspects of bath
estimation proceduresin greater detail. A thorough exposition of the
basic PLS procedure and Noonan's procedure for estimating hierarchical

structures is to be found in Noonan and Wold (1983).
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The basic PLS procedure involves two steps. The first step is the iterative
estimation of the weights defining the latent variable estimates, and the
second step is the non-iterative estimation of path coefficients and
loadings by standard procedures. The weights are estimated using so called
adjacent constructs. Adjacent constructs are generally defined as linear
composites of all lv's with which a given lv is directly connected,
irrespective of whether these adjacent lv's are regressors or regressands.
For example, in Figure 2 the adjacent constructs of the intervening lv's
TEACH to MANAGE are defined as linear composites of the blocks TPERC,
ACTIVITY and ENGPCT. The weights are determined in accordance with two
estimation modes, called 'outward' and 'inward' mode. The weights of
'outward' blocks are computed by simple regressions of each manifest
variable on the corresponding adjacent construct; the weights of 'inward'
blocks are determined as multiple regression coefficients obtained from

a multiple regression of the adjacent construct on the set of manifest
variables. Using different estimation modes or modifying the adjacent
constructs generally results in different weight estimates and, therefore,
generally results in numerically different path coefficients and loadings.
As noted by Noonan and Wold (1983: 222; see also Wold 1982), the definition
and use of adjacent constructs is the key feature that determines the
‘holistic' nature of the basic PLS design. This is because the adjacent
constructs directly or indirectly transfer information coming from all
blocks involved in a PLS model. For example, in Figure 2 the estimation
of the block TPERC utilizes not only information coming from the
intervening lv's TEACH to MANAGE but also information coming from the
blocks ACTIVITY and ENGPCT, as mediated by the adjacent constructs

belonging to the intervening lv's.
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Noonan's algorithm for estimating hierarchically structured models departs
from the basic PLS design in respect to the determination of adjacent
constructs. As indicated in Figure 3, the manifest variables associated
with the blocks TEACH to MANAGE are summarized in the higher order construct
ACTIVE. Noonan's procedure works, intuitively speaking, 'downward' from
the top level of a given hierarchy to the lowest level. The PLS iteration
is performed at the top level using subsequent lv's only for determining
the corresponding adjacent construct (compare Noonan and Wold 1983: 284).
That is, in Figure 3 the weights of the manifest variables belonging to
the blocks TEACH to MANAGE are determined with regard to ENGPCT only.
These weights are then inserted into the lower level blocks and are
transformed so as to give the lower level lv's unit variance. The
difference between adjacent constructs used to estimate the intervening
blocks is the source of the deviations between the micro-model and the
macro-model results described before. Three additional aspects of
Noonan's procedure should be noted. (1) Causal chains consisting of
hierarchically structured lv's are estimated by moving from the last
endogenous part of the model, over intervening parts, to the exogenous
part. For example, the model shown in Figure 3 could be estimated by
completing, first, an iteration sequence using the blocks ACTIVE and
ENGPCT only and by continuing with a second iteration sequence for
estimating the blocks TPERC and ACTIVITY. Above all, this

implies that information coming from exogenous blocks is not used for
estimating intervening and endogenous constructs. (2) Noonan's

procedure allows to specify causal relations among lower level lv's.
These relations are not incorporated into the iteration process.

This feature may constitute an additional source of deviations between
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micro and macro modeling results. (3) The same estimation mode is applied
to all lv's in a given hierarchy. That is, the estimation mode used to
determine the top level construct is indirectly also applied to all

lower level lv's.

The critical point of Noonan's algorithm for estimating hierarchically
structured PLS models is not the mere occurrence of numerical differences
between macro-models and corresponding micro-models. Rather, it is the
departure from fundamental principles of the basic PLS design which
ought to be questioned. While it is true that the introduction of
hierarchically structured lv's helps to test large and complex path models,
the option chosen by Noonan to modify the original PLS estimation
procedure seems to be somewhat less than optimal. My main objection
against Noonan's algorithm is that it introduces a reductionist component
into the estimation of hierarchical PLS models. As indicated above,
causal chains are during iteration divided into separate parts which are
consecutively estimated by moving from the the last endogenous segment to
the exogenous segment of a given model. This is because the estimation of
hierarchical blocks is exclusively directed towards subsequent lv's

while information coming from exogenous blocks is discarded. That is,
Noonan's procedure treats each hierarchy as if it were an exogenous lv,
irrespective of whether a given hierarchy is specified as an exogenous

or as an internening block. It is primarily this feature which seems to
be questionable. As illustrated by the above example, Noonan's algorithm
may occasionally increase the predictive power of intervening hierarchies
(because hierarchies are approximated as predictors only), but may

simultaneously result in a less optimal prediction of mediating lower
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level lv's. The basic PLS design, on the other hand, can be expected to
approximate intervening blocks as 'best mediating factors', since these
blocks are explicitly estimated as predictors and predictands. This
property appears to be jeopardized in Noonan's approach. Another critical
point of Noonan's procedure concerns primarily practical aspects. As
noted by Noonan, hierarchical models are primarily intended to aid

in identifying micro-models for more intensive investigations. Due to
the differences between estimation procedures, however, macro and micro
modeling results are not necessarily consistent in the sense that
macro-models and corresponding micro-models generally imply similar
conclusions in terms of the relevance of lower level lv's and manifest
variables. Hence, PLS analyses on the basis of hierarchical models may
occasionally suggest model modifications or interpretations of results
which differ substantively from conclusions based on the analysis of

corresponding micro-models.

4. Alternative Algorithms

This section briefly describes two algorithms which constitute possible
alternatives to Noonan's estimation procedure. For convenience, Noonan's
algorithm will be labelled as Algorithm I, and the two alternative
algorithms will be labelled as Algorithm II and Algorithm III, respectively.
An obvious alternative to Algorithm I is to estimate the lowest level lv's
directly, and to construct hierarchies by moving 'upwards', from lower

level 1v's to higher order constructs. This is the basic idea of

Algorithm II and Algorithm III. Algorithm II assumes the same basic model
structure as illustrated by Figure 3. That is, influences on the hierarchy
are assumed to operate via the lowest level constructs, and influences

on variables outside the hierarchy are assumed to operate through the
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top level construct. For estimating the lowest level lv's, it is necessary
to construct appropriate adjacent composites. This is done by considering
the predictors of a given lower level lv and the predictands of the top level
lv as adjacent Iv's. For the model in Figure 3, this results in exactly
the same adjacent constructs of the blocks TEACH to MANAGE as used in

the corresponding micro-model. Note that the above rule allows to use
different estimation modes for lower level Iv's and that causal relations
among lower level lv's would be incorporated into the iteration process.
In a second step, the lower level lv's need to be combined into higher
order constructs. This is accomplished by treating lower level lv's in
exactly the same way as manifest variables and by applying the normal

PLS estimation procedure. That is, higher order constructs may be
specified as 'outward' or 'inward' blocks, and the associated lower level
lv's are simply treated as indicator variables. The predictands of the

top level lv are considered as adjacent lv's; i.e. the estimation of
higher order constructs is directed towards subsequent blocks only. Note
that the estimation mode applied to higher order constructs may be
different from the estimation mode applied to lower level lv's. In short,
Algorithm II simply applies the basic PLS procedure to all blocks involved
in a given hierarchy and determines adjacent composites in accordance with

the assumed flow of information.

Figure 4 illustrates the hierarchical model that corresponds to Algorithm III.
This algorithm works in much the same way as Algorithm II, but allows to
specify direct effects on the top level construct. Accordingly, predictors
and predictands of the top level lv's are defined as adjacent to the lower

level lv's.as well as adjacent to the top level lv.
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For comparative purposes, Table 3 and Table 4 present selected results
(total effects on ENGPCT and R?-values) obtained on the basis of the
example used before. It is not possible to discuss the estimation
procedures and the respective results in detail. Therefore, the

following brief comments should suffice. (1) The largest R%?-value of

ENGPCT is obtained by Noonan's algorithm, with ACTIVE specified as an
"inward' block. Since Noonan's algorithm involves a multiple regression

of ENGPCT on all manifest variables belonging to the intervening lv's,

this is, in fact, the maximum R? that can be achieved on the basis of

the blocks TEACH to MANAGE. It will be noted, however, that a loss

of predictive power occurs, again, with regard to the overall model results.
(2) Due to the use and definition of adjacent constructs, Algorithm II
results in a very close correspondence between macro-model and micro-

model coefficients. If ACTIVE is specified as an 'inward' block, the
macro-model is, in fact, equivalent to the underlying micro-model. This

is a direct consequence of the way in which Algorithm II has been designed.
It must be noted, however, that the numerical equivalence is due to the
fact that ENGPCT involves just one manifest variable. Differences will
normally occur if a given endogenous construct involves multiple
indicators. In general, however, Algorithm II can be expected to produce
macro-model results which are fairly close to the results obtained from
corresponding micro-models. (3) The outcomes of Algorithm III appear to

be rather unsatisfactory. The procedure results in the largest amount of
loss of information and, therefore, some further mosifications seem to be
necessary. The examples and the results presented here are, of course, by
no means sufficient to come to definitive conclusions, and further research

on the estimation of hierarchical structures will therefore be necessary.
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Table 1 Typology of Specification Errors*

Hypothesized model ...

Incorrectly includes
variables

No Yes
No Correct model Type A
Incorrectly results error
omits
variables
Type B Type C
Yes error error

* Adopted from Deegan (1976)
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Figure 1
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Figure 2 Micro-model; total effects on ENGPCT in parentheses; all coefficients multiplied by 1000
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Figure 3  Macro-model; total effects on ENGPCT in parentheses; all coefficients multiplied by 1000
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Figure 4
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