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What Constitutes an Intelligent System?

If the purpose of this paper is to discuss prospects for intelligent systems as related to
information technology and research, it would be best to have an operational definition for
“intelligence” or an “intelligent system”. I find this a rather slippery task because, to paraphrase

one of our country’s Supreme Court Justices: I can’t define intelligence, but I know it when I see

it. Nevertheless, let me try, first using standard sources. The Random House Dictionary defines
intelligence as “capacity for reasoning, understanding, and for similar forms of mental activity;
aptitude for grasping truths, facts, meanings, etc.” plus a lot of others. The dictionary further
suggests that we look under “mind” for synonyms for intelligence. The Columbia Encyclopedia
has a full column on the topic describing it as a psychological attribute ...variously described as
the general ability of the organism acting as a whole to utilize understanding gained in past
experience in dealing with a similar or new situation, to adjust or adapt quickly and readily to the
environment, to learn without difficulty, or to form new behavior patterns to meet a new situation
by the modification or readjustment of those already acquired.” My Encyclopedia of Science
simply sends me off to read about Animal Intelligence, dismissing any other possibility. What
both you and I want from this discussion, rather, is associated with what is often described as

Artificial Intelligence; that is, a device capable of performing some (preferably, all) of the feats
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attributable to a living being. Notice that I have not predicated the intelligence desired as that of
a human mind/brain. It would be a marvelous feat when we produce a machine that “thinks like
a human”. Twant to consider the possibility of going beyond that point!

Let’s start with a little historical perspective. Alan Turing' was responsible for what we
all know as the Turing Test or the Turing Machine, whereby it may prove impossible to
recognize the behavior of a machine/robot/computer as different from that of an “intelligence”,
however that term is defined. More than one person has found such a test inadequate in
identifying intelligence. One of the earliest examples is that where Kurt Godel? in his famous
theorem showed that for every consistent system, there exist truths that are unprovable within
that system. For those of us unfamiliar with this theorem, which is mathematical in nature, let
me say that the key word in its statement above is consistent. In Godel’s use, a system is
consistent if any given statement, S, and a statement that is the negation of S are both not
theorems of the system. According to Godel then, we can never get to all the truth by simply
following a set of rules; the real world simply refuses to be constrained by deductive reasoning
and that is the best any rule-based system can be expected to follow. As food for thought,
however, consider that Godel’s theorem implies machines cannot be intelligent by placing
limitations on consistent machines. What if the machines were inconsistent in the same way that
humans are often inconsistent?

The reason why rule-based Artificial Intelligence, Al, though adequate for certain
(mindless [?!]) tasks, constantly runs into failure has to do with an inability to adapt - or to intuit.
As Stuart and Herbert Dreyfus* described the stages of learning in becoming proficient to drive a

car, a person first follows rules that are slowly and sometimes painfully acquired up to the point



where a driver performs almost automatically. We, intelligent people, can drive too close to the
car in front of us, “sense” a car beginning to pass on the right and all the other remarkable things
we do when behind the wheel and properly attentive. The “automatic” cars we saw recently on
TV traveling like a group of ducklings one behind the other, required more than a few control
devices to keep them in line - including buried magnets. The display may have looked
impressive, but a careful inspection would have uncovered numerous causes for concern.

So, it’s the ability to adapt that really sets the goal for an “intelligent system”. Chief
Administrator Dan Goldin of NASA understands this. He convened a seminar in 1996 because
he envisions sending an unmanned craft to the planet of another star. If the “intelligent system”
sent is not adaptable and runs into a situation totally unexpected - for instance, life forms based
on silicon rather than carbon - we are looking at a different atmosphere, different spectral regions
for information, lots of different problems. Being light-years away, the “intelligent system” may
have to reconstruct itself (if it can) even before it descends to the surface. It certainly will not
have the choice of calling home for instructions. Let me suggest we are at the beginnings of
building “intelligent systems” that will have this capacity. Their generic name is Neural
Networks.

A Neural Networks Primer

Neural networks are models for computation that take their inspiration from the way the
brain is supposed to be constructed. They often try to solve the problems that the brain seems to
try to solve. Biological neural networks in mammals are built from neurons, nerve cells, which

are themselves remarkably complex biological units (Figure 1). Huge numbers of neurons,



] N ,.‘~
l ‘ e
\ : | pr——,
- ! ' ..
\ ! l‘ ’ .' .i‘ : i? I

Figure 1. Reproduction of Ramén y Cajal’s drawing of neuronal structure.
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Figure 2. Generic structure of a prototypical artificial neural network.
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connected together and cooperating in poorly understood ways, give rise to the complex behavior
of organisms. Artificial neural networks are smaller, simpler, and more understandable than
the biological ones, but still able to do some remarkably interesting things (Figure 2). Some of
the operations that artificial networks are good at -- pattern recognition, concept formation,
association, generalization, some kinds of inference -- seem to be similar to things that brains do
well. It is fair to say that artificial neural networks (ANNS) behave a lot more like humans than
digital computers do, even to the fact that both require time to learn and neither are very good at
balancing a checkbook without help.

There are two ways of “doing” neural networks; one is by building electronic circuits and
the other is to simulate the network. In the first case silicon chips are used that have been
organized so that they may recognize images or sounds (such as Carver Mead’s retina and
cochlea)®. There have been many simulations used for basic research as well as programs, called
neural networks, actually used to perform such high level tasks as decision-making on loan
applications and translations of written material to audible text. The Appendix will delineate
examples of these two techniques.

The modern history of artificial neural networks is usually considered to have begun with
an often reprinted 1943 paper by Warren McCulloch and Walter Pitts®. They were making
models for brain function; that is, what does the brain compute and how does it do it? However,
only two years after the publication of their paper, in 1945, John Von Neumann’ used their model
for neuron behavior and neural computation in an influential discussion of the proper design to
be used for future generations of digital computers.

There are two related but distinct goals that have driven neural network research since its



beginnings. The idea is to construct and analyze artificial neural networks because that may
allow us to: First begin to understand how the biological neural networks in our brains work
(this is the domain of neuroscience, cognitive science, psychology, and perhaps philosophy) and
Second build more intelligent machines (this is the domain of engineering and computer
science). These two goals -- understanding the brain and making smart devices -- are mixed
together in varying proportions, though the bias is toward the careful analysis and application of
artificial networks. Although there is a degree of creative tension between these two goals, there
is also synergy.

The creative tension arises from the following observation. Consider an engineer who
wants to use biology as inspiration for an intelligent adaptive device. Why should the engineer
be bound by biological solutions? If the biological hardware is slow and unreliable, perhaps only
intrinsically undesirable algorithms are possible. Ample evidence suggests that our lately
evolved species-specific behaviors, like language, are simply not very well constructed. After
only a few tens of thousands of generations of talking ancestors, human language is still no more
than an indispensable kludge, grounded in and limited by the circuitry that nature had to work
with in the primate brain. Perhaps after several million more years of evolution our descendants
will finally get it right. Perhaps there are better ways to perform the operations of intelligence
and so why stick with the second rate?

The synergy between biological neural networks and artificial neural networks arises in
several ways: First, precise analysis of simple, general neural networks is intrinsically interesting
and can have unexpected benefits. The McCulloch-Pitts paper developed a primitive model of

the brain, but a very good model for many kinds of computation. One of its side effects was to



originate the field of finite state automata®. Second, to make intelligent systems usable by
humans perhaps we must make artificial systems that are conceptually, though not physically,
designed like we are. We would have difficulty communicating with a truly different kind of
intelligence. The current emphasis on user friendly computer interfaces is an example. Large
amounts of computer power are spent to provide a translator between a real logic processor and
our far less logical selves. For us to acknowledge a system as intelligent perhaps it has to be just
like us, perhaps even with arms, legs and a warm smile! As Xenophanes commented 2,500 years
ago, "... horses would draw the forms of gods like horses, and cattle like cattle, and they would
make the gods' bodies the same shape as their own." Third, neural networks provide a valuable
set of examples of ways that a massively parallel computer could (should?) be organized.
Current digital computers will soon run up against limitations imposed by the physics of
electronic circuitry and the speed of light. One way to keep increasing computer speed is to use
multiple central processing units (CPUs); if one computer computes fast, then two computers
should compute twice as fast. Unfortunately, coordinating many CPUs to work fast and
effectively on a single problem has proven to be extremely difficult. Neurons have time
constants in the millisecond range (10~ s); present-day silicon devices have time constants in the
nanosecond range (10”s). Yet somehow the brain has been able to build exceedingly powerful
computing systems by summing the abilities of huge numbers of biological neurons, even though
each neuron is computing several orders of magnitude more slowly than an electronic device
constructed from silicon. The best known example of this design is the mammalian cerebral
cortex, where neurons are arranged in parallel arrays in a highly modular structure (recall Figure

1). Most neural networks are abstractions of the architecture of mammalian cerebral cortex.
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Knowing, in detail, how this parallel architecture works would be of considerable practical value.
However, the study of human cognitive abilities suggests a price may be paid for using it. The
resulting systems, both biological and artificial, may be forced to become very special purpose
and almost surely will lack the universality and flexibility that we are accustomed to in digital
computers.

The things that make neural networks so interesting as models for human behavior [for
example, (a) good generalization, (b) easy formation of associations, and (c) the ability to work
with inadequate or degraded data], may appear in less benign form in artificial neural networks
as: (a) loss of detail and precision, (b) inexplicable prejudice, and (c) erroneous and unmotivated
conclusions. Making effective use of artificial neural networks requires a different kind of
computing than we are used to, one that solves different problems in different ways but one with
great power in its own domain (See the Appendix for one of the methods followed by ANNs to
“compute”).

Where are Neural Networks Leading Us?

When neural networks regained popularity, in the mid 1980's, a term that was sometimes
used to describe systems containing them was "neuromorphic." "Brain-like computing" was
another way of saying about the same thing. When one of these terms was used in engineering
the implication was that the artificial devices being built were following at least some of the
design principles of the mammalian brain (recall Figure 1, again). To those professionally
concerned with behavior, a parallel set of names might be proposed: "Psychomorphic" systems
and "mind-like computing." Artificial intelligence (AI), as classically defined, is describable by

these names, though when Al first developed in the 1950's and 60's it deliberately paid little
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attention to the substantial amount known about the facts of human behavior, believing that sheer
cleverness was capable of overcoming ignorance. Day by day we are learning more how the
brain functions, how and where it stores information and numerous details with respect to the
purpose of the various types of neurons. At least some of this knowledge will be useful in
building neural networks in the future. However, a major conceptual problem of neural networks
is that, even if they are in some vague architectural sense neuromorphic, they are rarely
psychomorphic. Even though there is a large body of lawful, regular, and reproducible
experimental results in the behavioral sciences, these ideas have rarely had much influence in the
neural network community, outside of a small number of researchers who specifically try to
model human cognition.

Let me state several reasons for this neglect: First, there are missing levels of
organization on the neuroscientific level. Neural network models are built from elementary
computing units. The largest neural network simulations used in practice contain perhaps a few
thousand units. The human brain contains billions of neurons, 10" or so, with as many as 10"
connections (or synapses). Current neural network models have a severe problem using, or even
acknowledging, the intermediate levels of organization that must exist in this numerical gap in
scale between the properties of single units and coordinated activity of the whole brain. As an
example of the problem, consider a large business organization, say IBM. We can follow an
individual employee during the course of a day. Or we can follow the health of the company as a
whole by looking at the annual report. It would be difficult to infer from either of these sources
of information the presence of workgroups, departments, and divisions; that is, groups of

employees and groups of groups of employees, where in fact most of the work of the company is
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organized and performed. Similarly, government has complex and essential intermediate level
structures, for example, in rough order of size, neighborhood, city, county, state, and federal.
Neuroscience currently allows us to look at single unit recordings for the behavior of single
neurons and gross electrical activity (EEG, evoked responses, imaging) for overall activation
levels, roughly the lowest and highest levels of neural organization. It is clear that there are
several orders of magnitude of grouping that must exist, have been conjectured to exist, are felt
to be important, but about which almost nothing is known as yet. We wait patiently and with
great expectation for experimental evidence to fill in the gaps. Second, there are missing levels
of organization at the Cognitive Science level. The most commonly used formulations of
network learning are limited and often misleading from the point of view of a psychomorphic
system. Neural network theory has been strongly influenced, for better and worse, by the
mathematics of classic pattern recognition®. Typically, pattern recognition assumes that sensors
have provided a set of input data connected to a classification, say a set of pixels corresponding
to the written letter "A." A network is presented with a number of examples of the classification
in a training set and the weights in the network are adjusted by various learning algorithms so as
to make it classify more accurately in the future. It can be shown that properly designed neural
networks can do this operation effectively enough for many useful applications. However, a
psychomorphic engineer might ask: is this all that we want to do? This structure, with an input
pattern transformed in the network to an output pattern, reproduces in form classic
Stimulus-Response (S-R) learning from psychology. S-R learning was proposed by the
behaviorists in the 1920's and 30's as the only true basis of a scientific psychology'®. Essentially,

we can solve the problem of animal behavior when we make lists of externally observable
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stimuli, the associated observed responses, and assume the brain is there to make links between
them. No hidden mental processes need be invoked. Clearly there is some truth behind this
analysis. Association has been known to be a primary mechanism of learning since Aristotle.
Even Aristotle, however, was quite aware, and it has been amply confirmed by work in
psychology and cognitive science over the past decades, that such a limited definition of
association cannot explain many aspects of behavior. It is therefore distressing to see neural
network theorists deliberately, or even worse, unconsciously, reproduce a severely limited and
inadequate view of mental operation. Third, focus on the Jormation of accurate associations has
distracted attention from a number of other important requirements for a psychomorphic system.
Controllability, flexibility, and teachability are at least as important in human cognition as
accuracy in retrieval, probably more so. For example, consider (Figure 3) the pixel pattern that a

letter recognizer classifies as a letter "A." Depending on the context, this pattern can be labeled

Figure 3. A set of pixels displaying a pattern giving an “A”.
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as a capital "A", a grade in a college class, an indefinite article in English, and so on, while in
French, Spanish or Italian it is a preposition. Further, the switch between one possible association
of the pattern and another is extremely rapid. For example, in a psychological experiment, an
"A" can be first associated with, say, pressing a button on the left. Time to respond to the
presentation of the "A" will become faster with repeated presentations, even though responses
have been error free since the beginning of the experiment. Suppose a verbal instruction now
tells the subject to respond to an "A" by pressing the button on the right. Suddenly the subject is
making a different response. The responses may be a little slower at first, but performance is still
error free. This flexibility is common and so trivial that we hardly even think about how difficult
it will be to get an artificial neural network to completely and correctly shift its input-output
relationships in a matter of milliseconds. My guess is that need for this flexibility places much
more stringent constraints on possible neuromorphic architectures than accurate learned
association. The psychomorphic system can constantly and quickly reprogram itself. The
previous example also suggests the importance of "teachability" for network operation.
Somehow presentation of properly structured inputs can speed up learning by orders of
magnitude. In the example above, the inputs causing a change in association were not even
examples of the association but verbal instructions recombining past learning. Learning in
school would be a painful and slow process if it were purely associative. Learning does not
proceed by a random pairwise accretion of facts in knowledge space. Something much more
complex is occurring, involving the formation of mental structures, use of interlocked concepts
and detailed mental models and the presentation of specific factual examples that are explained

by a teacher. The time course of real learning is often strikingly unlike the time course of simple
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neural network learning. Neural network learning typically starts with a tabula rasa, learns the
first associations quickly and accurately, and then gets slower and less accurate as it learns more
and more. Real learning often starts slowly -- for example, learning the multiplication tables in
grade school -- and then accelerates, so college mathematics courses provide an immense amount
of information very rapidly, once the foundations are built. As William James'' commented:
. the more other facts a fact is associated with in the mind, the

better possession of it our memory retains ... Let a man early in life

set himself the task of verifying such a theory as that of evolution and

facts will soon cluster and cling to him like grapes to their stems.

Their relations to the theory will hold them fast ...
The point here is that real memory has strong high level structure that uses simple association as
an elementary mechanism. Past information can aid in the learning and retrieval of later
information. One of the best critiques of simple neural networks is in the paper by Jerry Fodor
and Zenon Pylyshyn'?, who, among other points, observed that simple association is such an
inefficient way to build an information processing and retrieval system that an engineer would be
strongly advised to use something else if the system was to be in any way useful. An obvious
and practical task for future research is to take today's relatively well understood simple neural
network systems and try to combine them in such a way as to reproduce at least a little of the
flexibility and controllability observed in human memory. Fourth, because the history of neural
networks is tied to pattern recognition and computer science, there is a tendency to believe that
neural networks form general computing systems in the sense that Turing machines form

universal computers. There is absolutely no reason to believe that this is true. The biological
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nervous system is concerned with specificity and not generality: specific sensory systems,
specialized structures, specific kinds of computations. Although we like to think the human
brain is very general, when mental operations are looked at in detail striking limitations appear.
For example, the simple logic operation known as the Exclusive OR, the béte noire of neural
nets, can be incorporated into a puzzle. This puzzle can be solved by humans, though often with
some difficulty. The same logical structure when it appears in what seems to be a different
problem often does not generalize. There is a substantial body of research on this observation in
cognitive science.

Successful computation in neural networks is dependent on details of the data
representation, that is, on how the pattern of input and output unit activation relates to the world.
Neural networks are extremely sensitive to representations. In a real sense, the data
representation is the mechanism by which networks are programmed. The choice of a good data
representation is of far more value toward the solution of a problem than is the choice of the
learning rule or network. For various reasons, including the fact that neural structures tend to be
noisy (just as biological neurons are), and that small errors can propagate and amplify, it is not
possible to have psychomorphic computers perform in sequence the very large number of
accurate elementary computational steps that characterize the operation of digital computers. A
small sequence of computational operations combined with an effective input and output
neuromorphic data representation comprises the entire psychomorphic computation. John von
Neumann pointed out this essential characteristic of neural computation in 1958,

The biological brain contains true marvels of data representation, using details of

neuroanatomy and neurophysiology to respond to useful properties of the world. However, data
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representations tend to be very problem specific. The more that is known about a given problem,
the less general adaptabilty is needed. Learning requires ignorance; if everything is known,
nothing need be learned. Learning and adaptation are dangerous for an animal because they
involve rewiring the nervous system and should be used only when necessary. It has been
suggested that normal learning is one end of a continuum, with pathology lying at the other.
Here, perhaps more than in many fields, God is in the details.

I suppose the point of this discussion is that we know only a little about the earliest stages
of intelligent system design. The outlines of intermediate level network organization and the
rules, if there are any, for designing data representations for specific problems remain to be
discovered. It is not even clear what is the best way to analyze complex intelligent systems;
proper analysis may start with traditional statistics and its extensions to pattern recognition but is
unlikely to end that way. The most important future developments for both intelligent machines
and for the understanding of our own mental processes may arise when the constraints and the
abilities seen at the highest levels of cognitive function can be connected with low and
intermediate level neural network architectures.

To conclude, consider the similarity in the following two concepts. One or two gas
molecules in a box move around on carefully identifiable paths. Two hundred or so also can be
thought to follow already defined paths, even though they may collide infrequently and keeping
track of all their path would be difficult but not impossible - just get a bigger and faster computer
and you can simulate such a process “almost in real time”. When millions of gas molecules are
in the box, entirely different macroscopic phenomena are apparent; we use such concepts as

pressure, temperature and even entropy to describe them. A gas even supports wave phenomena,
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where large groups of molecules move in unison and have different macroscopic values at
different times. The same may be said when we consider first a few neurons where we can
follow the creation of an action potential that travels down an axon, which results in the release
of a cloud of neurotransmitters at one (or a number) of its synapses and, after passing across the
cleft come to receptors on the dendrite of a different neuron. All that is “easy” to follow and
predict. Get many, many neurons to interact and macroscopic phenomena must appear that are
vastly different from the microscopic working of individual neurons.

The number of synaptic connections in the human brain is MILLIONS of times greater
than the number of human genes. In aplysia ( a common sea slug often used for neuroscientific
studies), there are only 20,000 neurons and each is unique, but identical in every aplysia. In
cloning, the clones are identical in that they have identical genes; but they do not have the same

synaptic connections.
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APPENDIX
The information-processing unit fundamental to the operation of an artificial neural

network (ANN) is often called a neuron due to the influence on its structure by the biological
neuron that appears in animals. Figure A-1 depicts a model for the artificial neuron, which
contains three basic elements:

1. A set of synapases or connections, each of which has a weight or strength.

2. A summing element that adds each input signal after it has been “weighted”.

3. An activation function that limits the output of the neuron.
In particular, a signal, x;, is input at synapse I of neuron k and is modified by the weight w,,. The
weight may be excitatory (when its value is positive) or inhibitory (when it is negative). The
modified signals are added by the summing element, resulting in a signal u,, which is modified
by a threshold term and then passes into the activation function. The threshold term is applied to
mimic the manner whereby a biological neuron “fires” only when its electric potential is a certain
“threshold” value above its quiescent state. The activation function used depends on the
modeler, but typically is some sort of a sigmoid function (Figure A-2). Mathematically the
process is described by:

U= Yo Wi,
and
Vi = Oulu - 0))

where x,, x,, x3, ....x, are the input signals, w;, w,, Wy, .....w,, are the synaptic weights of the
neuron k, u, is the output of the linear summing device, 6, is a threshold quantity and ¢, is the

function that transforms the summer output into the neuron’s output, y,. A neural network, then,
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is created by connecting a number of these neurons together, where the output of one neuron may
be transmitted to one, two or two thousand other neurons (including itself for the purpose of self-
inhibition). In computer simulation a mathematical model of Figure A-1 is written and “layers”
of each neuron are set up in a format similar to that as given in Figure 2 for a representative
neural network consisting of three “layers™ of neurons, typically called (I) input layer; (ii) hidden
layer; (iii) output layer.

The digital approach would typically use a reduced instruction set computer (RISC)
processor, which is designed to execute a small number of simple instructions. Such RISC
systems are often fast enough to be satisfactory for such applications as a decision-maker for loan
applications or a Pap smear analysis. However, for complex applications such as speech
recognition or optical character recognition, process control or adaptive noise cancellation, a
system that can not only learn rapidly but must also adapt rapidly is needed. To meet these
demands very large scale integrated (VLSI) circuits are beginning to provide an ideal medium for
hardware implementation of neural networks. In VLSI technology, tens of millions of transistors
can be fabricated into integrated circuits on a single silicon chip.

The chips available today are of three varieties:

(a) digital, where all processes are done in a manner quite similar to the methods
used in present-day digital computers and the output is a digital signal. This
technology allows for ease of design and manufacture with high precision as
well as flexibility in the use of complex algorithms, despite the fact that digital
implementation of multiplication requires relatively large quantities of both area

and power.
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(b) analog, where the information-bearing signals have a continuous amplitude
throughout the “computation”. Although analog circuits suffer from lack of
precision, this shortcoming is compensated by the efficiency of the computations
based on the principles of classical circuit theory (and the fundamental laws of
physics). Such circuits, based on metal oxide silicon (MOS) transistors, can do
computations that are either difficult or time-consuming (or both) in the digital
mode with ease and perform them with much less power required to operate the
chip.

(¢) hybrid VLSI networks using pulse-frequency modulation have been
developed because they have been found to be both compact, relying on analog
computations, and reliable by using digital signals, which are known to be
robust, easily transmitted and regenerated. The technology has been well-
developed in the communication field. It should be pointed out that biological
neurons signal one another using pulse-frequency modulation.

A human begins to put together relationships between the outside world represented by a
visual sense through a physical image projected onto the rear of one’s retina, which is an array of
photosensitive receptors, connected to a neural network in the other layers. These neurons
convert an optical image into a neural image for transmission along the optic nerve for final
processing into a cognitive “signal” we call sight. The transformation involves three steps:

(a) Phototransduction by a layer of receptor neurons (the rods and cones);
(b) Transmission of those signals to a layer of bipolar neurons through synaptic

Processes;
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(c) Passage of these signals for further processing to ganglion neurons and thence to the

optic nerve.
Figure A-3 is a simplified circuit diagram of the silicon retina built by Mead; it is modeled on a
portion of the vertebrate retina. The primary signal that falls on this retina proceeds through each
photoreceptor and the circuitry representing a bipolar cell (as shown in the inset). The entire
image signal is processed, in parallel, at each node of the network. The net result is that the
silicon retina generates, in real time, outputs that correspond directly to signals observed in the
corresponding layers of biological retinas. These chips demonstrate a tolerance for device
imperfections that is characteristic of any collective analog system. They have already been used

commercially to read the numerical code printed along the bottom of checks.
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Figure A-3. Simplified circuit drawing of C. Mead’s silicon retina. A single pixel element is
shown in the circular window. In the diagram G is the conductance by which the photoreceptor
P drives the resistive network; the output results from an amplification of the difference between
the photoreceptor’s output and the electric potential of the resistive network at the point where it

is connected.
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