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The aim of the present paper is to illustrate the modern state of variational
calculus in large with several physical and geometrical examples. In spite of
the great progress in variational calculus during the last century. some classical
variational problems are still far from its final solution. But, as it often hap-
pens in Science, the attempts to solve classical problems give rise to beautiful
theories that give us an understanding of the problems and. sometimes. lead to
unexpected discoveries. As bright examples we have chosen Minimal Surfaces
Theory and Extreme Networks Theory, and here we explain our choice. Both
theories deal with visual geometrical objects, namely, with two-dimensional sur-
faces in Euclidean space and one-dimensional continuums — networks. respec-
tively. Both theories combine into themselves concepts and methods of many
branches of mathematics, such as differential geometry, calculus of variations.
functional analysis, topology, discrete mathematics, etc. But differences also
take place. Minimal Surfaces Theory is very well developed. In the modern
sense of the words, it was formed in 30th-40th by the pioneer works of T. Rado,
J. Douglas. and Ch. Morry then it was developed by H. Federer, W. Flem-
ing. and E. Reifenberg in 60th and A. Fomenko and Dao Trong Thi in 70th.
It coutains many deep and beautiful theorems, but also many open questions.
of course, and it attracts the attention of many scientists all over the world.
Quite the contrary, Extreme Networks Theory is now just in the making. It has
begun to form in works of A. Ivanov and A.Tuzhilin in 80th-90th, who has un-
derstood that it could be useful to apply differential methods in investigations
of Steiner problem that was usually considered as a problem of discrete geom-
etry (the roots of these ideas can be found in works of E. Gilbert. F. Hwang.
A. Fomenko. F. Morgan, H. Pollak and H. Rubinstein). Now, after 1013 vears
of the investigations. it becomes clear that Extreme Networks Theory has all
main features of a new branch of mathematics, namely. it contains its own deep
and non-trivial results, it requires special techniques, and it seems to have a
lot of relations with other branches of mathematics. One of the aims of this
article is to attract the attention of scientists to Extreme Networks Theory and
to present some bright results of the theory.
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Figure 1: Douglas contour.

1 Interfaces between two media

The theory of minimal surfaces and surfaces of constant mean curvature is a
branch of mathematics that has been intensively developed, particularly re-
cently. On the basis of this theory we can investigate soap films and soap
bubbles, interfaces between two media, which occur widely in chemistry and
biology. for example, membranes in living cells, capillary phenomena. and so
on. Minimal surfaces also turn out to be useful in architecture. Before giving
exact definitions, let us consider some examples.

1.1 Soap films and soap bubbles

If we dip a wire contour into soapy water, and then carefully lift it out. a
soap is left on the contour. For many “young researchers” this is the time to
obtain an iridescent bubble by blowing on the film. However, the soap films
themselves conceal unexpected properties, which we can immediately see by
making a simple experiment. Bend a wire contour, as shown in Figure 1. This
is a so-called Douglas contour. Let u and v denote the distances hetween the
extreme circles of the contour. It turns out that by lifting the contour out of
the soapy water differently we can obtain different soap films. Figure 2 shows
some of them (for small v = ug and v = vg).

If the contour is not deformed in the process of obtaining the film. then as
a rule films of type la and 1b are formed. A film of type 2 is obtained if at
the time of lifting the contour out of the soapy water the left and right circles
are kept joined (u = 0. v = 0). but after lifting the contour out theyv are let
free. The elastic contour returns to its original position (u = wg, v = vg). and a
film of type 2 remains on it. Films of type 3a and 3b can be obtained similarly.
by combining only right (or only left) circles. To obtain a film of type 4 it is
sufficient to puncture a film of type 3a by a disc D2.

We observe that films of type 2 and 3 are not smooth surfaces. They have
singularities: a singular point A where four singular edges meet (type 2). or
a singular edge S' (type 3). Moreover, smooth films of types 1 and 4 have
different topological type: a film of type 1 is a two-dimensional disk D?. while
a film of type 4 is a torus with a point deleted (see Figure 3).



1. Interfaces between two media.

Figure 2: Soap films spanning Douglas contour.
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Figure 3: Soap films spanning Douglas contour have different topological types
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Thus. on a given contour we can, generally speaking, stretch many soap
films. and not every film need be a smooth surface. Moreover, on a contour
that is a bent circle we can stretch a minimal torus with a point deleted (a film
of type 4). How many soap films can span a given contour? What topological
types of films can occur? What singularities can be found on a soap film? These
and other questions are considered in the theory of minimal surfaces (see below).

Soap bubbles and soapsuds, that is, a system of soap bubbles, are just as
interesting to the researcher. Physical bubbles differ from soap films in that
bubbles bound regions of space in which air is under greater pressure than the
air outside. If we look closely at the soapsuds, we observe that the singularities
at the junction of different bubbles are similar to the singularities of soap films.
By carrying out many experiments with the interfaces between two mecdia the
Belgian physicist Joseph Plateau (1801-1883) formulated four principles. which
lescribe the possible stable singularities on these surfaces. It turns out that the
two types of singularities revealed above — a smooth singular edge at which
three sheets meet, and a singular point at which four smooth singular edges
meet. each pair of which is spanned by a smooth sheet — are the only possible
singularities of stable soap films and soapsuds (Plateau’s 1st, 2nd. and 3rd
principles). Moreover, in the first case the sheets meet at a singular edge at an
angle of 120°, while in the second case the singular edges meet at a point at
an angle of about 109°28'16” (more precisely, the cosine of this angle is —1/3).
like the four line segments drawn from the center of a regular tetrahedron to
its vertices (Plateau’s 4th principle). We give some elementary justification of
these principles below. first describing the variational principle that underlies
soap films and soap bubbles.

1.2 The Poisson-Laplace theorem

Soap films and soap bubbles can be regarded as the interfaces between two
homogeneous media in equilibrium. A soap film with boundary locally. that is.
in a neighborhood of each of its points, separates two media, air-air. in each of
which the pressure is the same. Therefore the total pressure on each small area
of a soap film is zero. In a soap bubble the pressure inside is greater than the
pressure outside. so the vector of the resultant pressure is directed ontwards.
This force must be compensated by the forces of surface tension. Since the
pressure is always directed along the normal to the interface and is the same in
absolute value at all points of this interface because of the homogeneity of the
media. the interface is “curved in the mean” identically at all its points. To give
a precise meaning to this statement, we need to define the geometric concept of
"mean curvature” (for the details see [2], [5]).

Let M be a smooth two-dimensional surface in R?. suppose that the point
P lies on the surface M. and that NV(P) is one of the two unit normals to M at
P (the vector N(P) is orthogonal to the tangent plane to M passing through
the point P; we denote this tangent plane by TpM).
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Figure 4: Tangent plane and normal section.

Through P we pass a plane II containing the N(P). The plane II intersects
M along a curve v called a normal section. The unit vector v tangent to ~ at
P is called a direction of this normal section. Clearly, the vector —uv determines
the opposite direction of the normal section v, and the vectors v and —» lie in
the tangent plane Tp M (Figure 4).

Let 1-:'(0) denote the curvature vector of v in the direction v. that is. the
acceleration vector at P under motion along v with unit speed. We note that
k(v) = k(—v). It is easy to show that the curvature vector k(v) is collinear with
the normal N(P). We define the curvature k(v) of a normal section v in the di-
rection v with respect to the normal N(P) as the quantity k(v) = (E(u) N(Pj).
where the brackets ( , ) denote the standard scalar product of vectors in R*.
Clearly. the continuous function k(v) takes maximum and minimum values
(since k(v) is a function on the (compact) circle S? formed by all directions
). These values are called the principal curvatures ki and ko of the surface
M at the point P. and the normal sections in which the values k. and &k, are
attained are called the principal sections.

Definition. The mean curvature H of a surface M at a point P € 1/ with
respect to the normal V(P) is half the sum of the principal curvatures: H =

(ky + ks)/2.

Let o denote the angle between the direction v of an arbitrary normal section
v at a point P € M and the direction of the principal section v, (Figure 3).

If &y is the curvature of the principal section g1, and ks is the other principal
curvature. then by Euler’s well-known formula

k‘(U) = ]\/((,9) = kl ('(’)S2 @ + ]\!2 Sillz((p).
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Figure 5: Principal sections.

To represent more clearly the distribution of the curvatures of the normal
sections v as the angle ¢ changes, we construct in the plane with polar coordi-
nates (p, ) the graph p = |k(¢)|. We can distinguish the following cases:

a) k; and ky are nonzero and have the same sign. In this case the graph is an
ellipse-like curve with “semi axes” |kq| and |ky| (where |k(p)] is maximal
and minimal). If & = ko # 0, this “ellipse” degenerates to a circle
(Figure 6a);

b) k; and k, are nonzero and of different signs. In this case the graph is a
“four-leafed rose” (Figure 6b);

c) one of the curvatures k; is zero — the “four-leafed rose” degenerates into a
“two-leafed rose” (Figure 6¢);

d) both the principal curvatures are zero. The graph is a point (the origin).

It is now clear that if Ay is not equal to kg, then there are exactly two
principal sections. which are in fact orthogonal to each other. If the principal
curvatures are equal. then the curvature of all the normal sections is the same
and equal to the mean curvature H.

Remark. It is easy to see that half the sum of the curvatures of any two
mutually orthogonal normal sections is constant and equal to H.

Theorem 1.1 (Poisson—Laplace) Suppose that a smooth two-dimensional sur-
face M in R?® is the interface between two homogeneous media in equilibrium.
Let Py and P, be the pressures in the media. Then the mean curvature H of the
surface M 1s constant and equal to H = h(P; — P,), where the constant A\ = 1/h
is called the coefficient of surface tension, and Py — P, is the difference between
the pressures in the media (the resultant pressure).
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Figure 6: Distribution of curvatures of normal sections.

Thus. the expression “curved in the mean identically” implies that the mean
curvature of the surface is constant. Taking account of what we said above. we
can conclude that the mean curvature H of a soap film is zero, H = 0. and the
mean curvature H of a soap bubble is a constant # 0. In mathematics surfaces
with H = const are called surfaces of constant mean curvature. For the case
H =0 these surfaces have a special name — minimal surfaces (due to the fact
that they locally minimize the area functional). Sometimes they are called soap
films. and swrfaces with H = const # 0 are called soap bubbles.

Surfaces of constant mean curvature are widespread in nature and play an
important role in various research. Thus, for example. surface interactions on
the interface between two media determine the character and rate of chemical
reactions. Various membranes, such as the ear-drum and membranes that sepa-
rate living cells, are minimal surfaces. One more example consists of microscopie
marine animals — Radiolaria (see [1]).

2 The principle of economy in Nature

I this section we talk about an alternative approach to the description of min
imal surfaces and surfaces of constant mean curvature. based on the variational
principle (for a more detailed historical survey see [3]).

2.1 Optimality and Nature

In 1744 the French scientist Pierre-Louis-Moreau de Maupertuis put forward
his famous principle, which has become known as the principle of least actiow.
In 1746 Maupertuis published a paper “The laws of motion and rest deduced
from a metaphysical principle”. This metaphysical principle is based on the
assumption that Nature always acts with the greatest economy. Starting from
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this position, Maupertuis draws the following conclusion: if certain changes
occur in Nature, then the total action needed to carry out these changes must
be as small as possible.

In parallel and indepencdently Leonard Euler in 1744 obtained a strict proof
that the principle of least action can be used to describe the motion of a material
point in a field of conservative forces such as the motion of the planets around
the Sun. Euler also put forward the conjecture that for any phenomenon in
the Universe we can find a maximum or minimum rule to which it is subject.
This remark appeared in the Appendix to his famous work of 1743 ~Methods of
finding curves that are subject to a maximum or minimum property”. the first
textbook on the calculus of variations.

When in 1746 Maupertuis published his work on the principle of least actiow
he was well aware of Euler’s achievement. since he briefly described it in the
Preface. Then, however. he added: “This remark ... is a beautiful application
of my principle to the motion of the planets”, thus asserting his priority.

Euler reacted to this remark by giving up his right of priority, for which he
was strongly criticized by certain historians of science. We shall not go into
the details of the subsequent keen discussion that developed over priority in the
discovery of the principle of least action. We shall only say that other people
(Konig and apparently Leibniz) laid claim to authority and that the discussion
was linked to the anthropomorphic understanding of the terms “living force”
and “action” and with theology (see 3], [4]).

However. we observe that Maupertuis. who formulated his principle starting
from the idea of the perfection of God, tested it on a few examples. bur he did
not investigate some of them thoroughly. It turns out that the principle of least
action 1s not always true.

Let us consider one of the examples given by Maupertuis — the reflection
of light. Here the law of least action leads to the conclusion that a ray of light
“selects” from all possible routes from the source to the receiver the one rhat can
be covered in the least time (this rule had already been formulated by Fermat).
If light is propagated in a homogeneous medium, then this minimum principle
leads to the simpler rule: a ray of light moves along the shortest path joining
the source and the receiver.

Consider a spherical mirror situated in a homogeneous medinm. Suppose
that the source S and the receiver T' are symmetrical about some line ( passing
through the center of the sphere. What characterizes the trajectory SMT of
the motion of light emitted from the source S. reflected in the mirror at a point
M. and received by the receiver T7 In this situation we apply the famous law
presented in the work Catoptrica attributed to Euclid — the so-called law of
reflection. The following brief formulation of it is well known: the angle of the
incidence is equal to the angle of reflection.

Figure T shows two situations: a convex mirror (Figure 7a) and a concave
mirror (Figure 7b). In both cases the point M is the point of intersection of the
mirror and the line ¢ (we consider the trajectories of the motion of light in the



2. The principle of economy in Nature. 0

Figure 7: D’Arcy’s example.
I

plane passing through the source, the receiver, and the line ¢). Through M we
draw the ellipse with foci at S and T. If M; is an arbitrary point lying outside
the ellipse, M3 is an arbitrary point inside it, and M is an arbitrary point on
it. then [M S|+ [MiT| > |MS| + |MT| > |MyS| + |M,T)|.

Hence it follows that in the case of a convex mirror the trajectory ST
actually has the shortest length, but for a concave mirror this is not always so.
In Figure 7b the source S and the receiver T are symmetrical about the center
of the sphere. It is easy to see that any path SM,T. where My # M. i shorter
than the path SMT.

Thus. whether Nature is most economical or most wasteful depends own the
form of the mirror. Citing similar arguments. d’Arcy showed in 1749 and 1752
that the principle of Maupertuis was not clearly formulated, and leads ro incor-
rect assertions.

Nevertheless, the idea of optimality of the phenomena of Nature plays au
important role in physics. The mathematical formulation of this idea Las given
birth to the calculus of variations. the founders of which are usually taken ro
he Lagrange and three Swiss mathematicians from Basel: the brothers Johann
and Jakob Bernoulli and a student of Johann Bernoulli — Leonard Euler.

2.2 Minimal surfaces and optimality

It turns out that the forms of soap films are also optimal in a certain sense.
namely the corresponding minimal surfaces are the extremals of the area func-
tional. Let us explain this statement. For this we consider a soap film covering
a given contour. Surface tension leads to the film tending to take up a form

with the least possible surface energy (of course. this is an approximation. which
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nevertheless works well in practice). Since the surface energy is directly pro
portional to the surface area, as a result of minimizing the surface energy the
area of the soap film is least compared to the areas of all sufficiently neighboring
surfaces covering the given contour.

Thus. soap films are local minima of the area functional. However. minimal
surfaces. that is, surfaces of zero mean curvature, need not minimize the area
even among all neighboring surfaces (with given boundary). To explain this
we note that the concept of “neighboring surfaces” can be defined in different
ways. We shall understand by a neighboring surface of a given surface 1/ one
obtained by a small deformation of M, leaving the boundary M fixed. For a
zero-dimensional surface M, that is, when M is a point, a small deformation is
a small displacement of M. When the dimension of M is at least one, we can
define two types of small deformations: a deformation with small amplitude.
that is. when each point of M is displaced not far from its original position. and
a deformation with small support, when only a sufficiently small region of 1/
unclergoes a deformation: the closure of such a deformed region is called the sup-
port of the deformation. A deformation with sufficiently small support always
increases the area of the minimal surface, so for such deformations the mini-
mal surfaces do minimize the area. For deformations with small amplitude this
15 not so. Nevertheless, for such deformations minimal surfaces are extremals
(critical points) of the area functional.

It is easy to show that the (finite) area of any surface in R? can always
be increased by an arbitrarily small deformation of this surface, so no surface
an be a local maximum for the area functional. It is well known that critical
pomts other than a local minimum and a local maximum are called saddle
points. Minimal surfaces corresponding to saddle points of the area functional
(for deformations with small amplitude) are said to be unstable. If we have
succeeded in creating a soap film that has the form of an unstable minimal
surface. then fluctuations of this film that are small in amplitude, which always
exist in the real world, would instantaneously lead to its collapse — the film
constructed would turn out to he unstable.

Thus. minimal surfaces are critical points of the area functional. It turns
out that the converse is true: a surface M that is a critical point of the area
functional (considered on the space of all possible surfaces close (in amplitude)
to M and having the same boundary OM) is minimal. that is. it has zero meau
curvature.

Swifaces of constant mean curvature are also extremals of a certain func-
rional. They can also be obtained as extremals of the area functional if we
restrict the possible deformations. As an example we consider a soap bubble.
If we blow on it. the film, sagging in one place, will swell at another place in
sich a way that the volume of the region inside the bubble is unchanged. This
observation is the basis of the definition of a surface of constant mean curvature
from the viewpoint of the variational principle. For a closed surface honnding
a region in R?, as admissible deformations we consider only those that preserve
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the volume of the region bounded by this surface. The condition that the vol-
ume is preserved can be described in yet another way. For this we define the
function of change of volume of a region V' bounded by a surface M under a
deformation M, of this surface. For each t = t; we consider the totality of
regions included between the surfaces M and M;, , From the total volume of
those that lie outside V' we subtract the total volume of those that lie inside 1.
and we call the resulting number the change in volume at the instant + = #g.
Varying tg, we obtain a function which is called the change of volume function.
Clearly. the regions lying inside and outside V" are on opposite sides of 1. and
so they can be defined without the use of V.

This observation enables us to define the change of volume function for a
deformation M; of an unclosed surface M (such as the soap film bounded by a
wire confour or a hemisphere having the equator as its boundary). but in this
case we must require that the deformation M, is fixed (= 0) on the boundary
OM of the surface M.

We say that a deformation M, of a surface M (fixed on OM if OM # 0)
preserves the volume if the change of volume function constructed from this
deformation is identically zero. It turns out that surfaces of constant mean
curvature are critical points of the area functional restricted to the space of
deformations that preserve the volume.

Since surfaces of nonzero constant mean curvature are not minimal surfaces.
they are also not critical points of the area functional considered on the space of
all possible deformations (fixed on the boundary), not only those that preserve
the volume. Thus, restriction of the space of admissible deformations naturally
leads to an increase in the number of surfaces that are critical points of the area
functional considered on this space.

A description of minimal surfaces as extremals of the area functional proves
very useful. For example, this approach has given the possibility of solving
the so-called Plateau problem. which consists in the following: for any contour,
among all surfaces of given topological type that bound it, is there a surface of
least area? A positive answer to this problem in the case when the contour is
a simple rectifiable Jordan curve (it has finite length) and the swface has the
topological type of the disk D? was obtained in 1928 by the young American
mathematician Jesse Douglas. However, his proof turned out to he incomplete.
and up to 1931 his paper had not appeared in print. At about the same time a
solution of Plateau’s problem, obtained by the Hungarian mathemasician Tibor
Rado. was published. In the following decades Jesse Douglas also solved a
number of other problems that arose in the theory of minimal surfaces. In
particular. the powerful mathematical technique that he developed enabled him
to prove the existence of minimal surfaces of high genus spanning one or finitely
many contours. For his achievement Dougals was awarded in 1936 the highest
prize in mathematics — the Fields Medal.

In conclusion of Section 2 we give the one-dimensional version of Plateau’s
problem. the so-called Steiner problem, and show how from its solution there
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A c A c=p
Figure 8: Solution of Steiner problem for three points.

follows a proof of Plateau’s empirical principles, which describe all possible
singularities of soap films of stable minimal surfaces. In Section 3 we discuss
the one-dimensional case in more details.

2.3 Steiner’s problem

Let us begin with the simplest case. Suppose we need to connect the towns A.
B. and C by a system of roads, that there are no obstructions, and that we are
free to construct the roads where we like. Suppose that the region in which the
towns lie is flat. The problem is to find a system of roads of least length. In
mathematical language this means the following: for three given points 4. B.
and C lying in a plane, to find a point P and paths joining P to A. B. and
C' so that the total length of these paths shall be as small as possible. Since a
line segment is the shortest path between its ends, the required paths are line
segments PA, PB, and PC'. [t remains to choose P in an optimal way.

It turns out that the solution depends on the relative positions of A. B.
and C'. If all the interior angles of the triangle ABC are less than 120°. then
the required point P is uniquely determined from the condition that the angles
APB. ﬁ, and CPA are equal (they are thus equal to 120°). But if one of
the angles of the triangle ABC |, say the angle at C, is at least 120°. then P
colncides with C' (see Figure 8).

The proof of this assertion is based on some elementary geometrical lemmas.

Lemma 2.1 (Heron’s theorem) Suppose that points A and B do not lLie on
a line a. Then among all the points P of the line a the point P = Py such that
|AP| + |BP] is as small as possible 1s uniquely determined from the following
condition: the angle between APy and the line a is equal to the angle between

BPy and the line a (Figure 9).

If 4 is a source of light, B is a receiver, and « is a mirror, then Heron's law
can be regarded as a special case of the law of reflection (see above).

Lemma 2.2 Suppose that the points A and B are the foct of an ellipse. and
that the line a touches this ellipse at « point P. Then the angles between the
line « and the segments AP and BP are equal (Figure 10).
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Figure 9: Heron’s theorem

Figure 10: Ellipse properties
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Figure 11: Solution of Steiner problem for three points.

It follows that if we put a source of light at one focus of an elliptical mirror.
then all the rays collect at the other focus. Moreover, in elliptical billiards the
hall always goes either outside the foci, or through the foci, or between the foci.

To prove Lemma 2.2 it is sufficient to observe that the sum of the distances
from any point outside an ellipse to its foci is greater than the sum |PA|+ |PB|
(since P lies on the ellipse).

Now suppose that P is a solution of Steiner’s problem for a triangle ABC' in
which all the interior angles are less than 120°. Through P we draw the ellipse
whose foci are A and B. Through P we draw the tangent a to this ellipse (see
Figure 11). It is easy to see that C'P is perpendicular to a. Therefore from

— T — e — T —
Lemma 2.2 we see that APC' = BPC'. Similarly, BPC = APB. Thus. all the
angles at P are equal to each other. and therefore equal to 120°. Now it is easy
fo construct the required point P and to see that the solution is unique.

If instead of three points A, B. and C' we take any finite number of points. we
obtain the generalized Steiner problem: it is required to join all these points by
a finite system of curves of least length. This problem can be restated as follows:
how do we join n towns by a network of roads with the least expense? From
the combinatorial point of view the solution of this problem is a combination

of two solutions. obtained above for the case n = 3. Here are some examples
(Figure 12).

We observe that the solution of the generalized Steiner problem is not unique.
For example. if four points are vertices of a square, we can obtain two symmetri-
cal solutions (Figure 13). We note that a system of paths of least length joining
n points of a plane is called a shortest network (in the plane). or Steiner minimal
tree.

The generalized Steiner problem in the plane has still not been completely
solved. so an experimental “solution” is of interest. Take two glass or transpar-
ent plastic sheets, place them iu parallel planes. and join them by pieces of wire
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Figure 12: Examples of the shortest networks.

Figure 13: Two shortest networks spanning vertices of a square.
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of the same length, equal to the distance between the sheets. Clearly. all the
pieces of wire are parallel to one another and perpendicular to the sheets.

If we dip this configuration into soapy water, and carefully lift it out. then
between the sheets there will be a soap film whose boundary consists of two
parts: the set of joining wires and the set of “traces” which the film leaves on
the sheets. We note that in accordance with the minimum principle the film 1s
at an angle of 90° to each sheet. Moreover. this film consists of perpendicular
sheets of planar rectangles that adjoin each other along the singular edges (see
Figure 14). If a singular edge is not a joining wire, then in accordance with
Plateau’s principles exactly three rectangles meet on it at angles of 120°. We
observe that the area of the resulting soap film is equal to the total length of
the path joining the points where the wires are fastened (the “trace”™ of the
soap film on a sheet) multiplied by the distance between the sheets. If the film
has least area among all films with a partially free boundary consisting of the
joining wires (rigid boundary) and the “traces” on the sheets (the hypothesis
of the existence of such a film is called Plateau’s problem with obstructions).
then the corresponding “trace” on a sheet is a solution of the generalized Steiner
problem for the configuration given by the fastening points.

Let us now turn to Plateau’s principles, which describe all possible singular-
ities of stable minimal surfaces. On a soap film we choose an arbitrary point P.
We take a smaller and smaller neighborhood of P and blow it up to the same
size. In the limit all the surfaces that join at P become planar, and the singular
edges become segments of straight lines. Clearly, after such an enlargement the
resulting fragment of stable film will also be stable. Now consider a sphere S*
with center at P. Its intersection with the planar configuration we have con-
structed is a networks on the sphere 52, Clearly the curves of intersection are
parts of great circles of S2. Moreover, if [ denotes the length of the network.
and r is the radius of the sphere S%, then the area s of the part of the planar
configuration inside the sphere is equal to s = [r/2. Therefore from the stability
of the film it follows that at each node of the network only three arcs can meet
at angles of 120° (otherwise by a small deformation we could lower the length
of the network, and hence the area of the film).

The following natural problem arises (the so-called Steiner problem on the
sphere): to describe all possible networks on the sphere consisting of ares of great
circles meeting at each vertex of the network three at a time at equal angles (of
120°). In contrast to the planar Steiner problem, the spherical problem has been
completely solved. It turns out that there are exactly ten such networks. drawn
in Figure 15. A more careful analysis shows that only three of these ten networks
(the first three in Figure 15) correspond to configurations that minimize the area.
Figure 15 shows soap films stretched oun contours corresponding to minimal
networks on a sphere. Only the first three of them are cones corresponding
to the local arrangement of soap films described in Plateau’s principles. This
observation is a physical “proof” that only in the first three cases are the cones
absolutely minimal, that is, they correspond to singularities occurring in stable
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Figure 14: A soap film between two parallel sheets that simulates minimal
network.

soap films.

3 Extreme Networks

The present Section is devoted to a new branch of mathematics studying brawuch-
ing solutions (eztremals) of one-dimensional variational problems. This branch
called Eztreme Networks Theory appeared during attempts to understand how
one can solve the generalized Steiner problem (see above).

We recall that Classical One-Dimensional Variational Problem.can be stated
as follows: to describe extremals of a variational functional defined on a space
of curves joining a pair of fixed points in an ambient space. The theory of
such extremals (so-called eztreme curves) is well elaborated and presented in
standard university courses such as Optimal Control. Differential Geometry. awd
Classical Mechanics. Let us assume now that we are given not with two hut
with three or more points of ambient space. The following natural questions
arise: How is it possible to generalize the theory to this case? How is it possible
to generalize the notion of an extreme curve? In such a way we come to an idea
to introduce a new object, networks, which can be represented as unions of a
finite number of curves into consideration.

Extreme networks for elementary variational functionals such as the length
functional appeared in several ways in different theoretical and applied inves
figations. However, the problem was not systematically studied, in spite of its
classical statement. Apparently, first problems of that type appeared in works
of French mathematicians, Gergonne, Clapeyron and Lamé are among them.
C. Gauss was also interested in such problems. In his letter to Schuhmacher.
he brought up a question how to build the shortest system of roads joining



3. Extreme Networks. 18

Sphe'le

contour
<’

Figure 15: Minimal networks on sphere.

Figure 15: Minimal networks on sphere (continuation).
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four German towns: Hamburg, Bremen. Hannower, and Braunschweig. Gen-
eral problem of finding of the shortest networks joining a given finite set of
points in the plane was stated by Jarnik and Kossler. see [7]. Later on. this
problem became widely well-known as Steiner problem due to the famous book
of Courant and Robbins (1941), see historical reviews in [8], [9], [10]. or [11].
Notice that Steiner problem has several sorts, among them there is so-called
rectangular Steiner problem consisting in description of the planar shortest net-
works whose edges are polygonal lines with parallel to coordinate axes links.
The later problem appears naturally under arrangement of wires on printed
circuit cards, see [3], and [9).

Thus. the idea of networks studying appeared several ages ago. and the in-
terest to Steiner problem did not fade away as times goes by. Moreover. today
a systematic studying of networks fulfilling some natural conditions. especially
some extremality conditions. becomes even more important due to rapid devel-
opment of networks of different kinds and levels. As an example we can speak
about transportation networks, computer networks, networks preseribed by the
structure of complex chemical molecules, such as DNA, ete.

What is the difference between the classical approach and the approach of
extreme networks theory?

Firstly, main classical works concerning extreme networks are devoted to
the studying of the shortest networks, the considered functional is usnally either
Euclidean length functional in a vector space (in the plane for the most part). or
Manhattan length! functional (also in the plane mainly). But extreme networks
theory supposed to give a common approach to investigate networks extreme
with respect to an arbitrary functional in an arbitrary ambient space. sav in
a smooth manifold, or in a manifold with singularities such as a swrface of
polyhedron or an A. D. Alexandrov space, etc.

Secondly, the local structure of the shortest networks. that is. the structure
of sufficiently small neighborhoods of the network points, is determined rigic
enough. But if we consider extreme networks instead of the shortest ones then
several possibilities appear. Notice that extremality is the network’s property
which characterizes the behavior of the functional under small deformations of
the network. In the case of curves. the deformations are defined in more or
less unique and natural way. In the case of networks one can consider several
essentially different types of deformations. But the following two types are
most important: deformations preserving the structure of the network. and
deformations which can split some vertices of the network (see an example of
such splitting of the vertex in Figure 17). Notice that the network I'. spanuine
the vertices of the square and having exactly one interior vertex v located in
the center of the square, is an extremal for the length functional with respect to
the deformations preserving the network’s structure. However, the deformation

'Recall that Manhattan length of vector equals to the sum of the length of its projections
to coordinate axes.
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Figure 17: Splitting of the vertex.

splitting the vertex v as it is shown in Figure 17 decreases the length of the
network I'. The velocity of this decrease is not zero. thus the network I is no
longer extreme with respect to such deformations.

The networks which do not change their structure under deformations are
called parametric networks. The networks which allow the vertices splitting.
that is, the networks whose structure can change under deformations are callec
networks-traces. (Formal definitions of these types of networks can be found
n [11]).

Thirdly, by their own nature the networks possess both geometrical and
combinatorial characteristics, they have both continuous and discrete proper-
ties. Therefore, creation of extreme networks theory initialized the development
of new methods which do not have analogue in classical theory. The techuique
appeared combines methods of differential geometry and variational caleulus on
the one hand, and methods of discrete geometry and combinatorial analysis on
the other hand. Besides, the authors hope that the continuous—discrete nature of
networks could give a new way of thinking about problems dealing with geomet-
rical quantization (in the most wide meaning of the words). Namely, properties
of extreme networks (with respect to an appropriate variational functional) con-
tain information about both continuous (geometrical) and discrete (quantum)
characteristics of ambient space.

Below we present several spectacular geometrical results obtained in Extreme
Networks Theory. An interested reader can find details in [10] or [?].

3.1 Possible structure of planar extreme network depends
on geometry of its boundary

We consider planar binary trees (that is, planar connected graphs without cycles.
whose vertices degrees equal either 1 or 3) that are extreme with respect to
the standard Euclidean length functional. Such networks are usually called
local minimal 2-trees or full Steiner minimal trees, and it is well-known, see for
example [9], that each shortest tree in the plane can be naturally representec
as a union of such networks. Moreover, the most present-day algorithms are
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based on an enumeration of all such possible local minimal 2-trees. Therefore.
each a prior elimination of possibilities can be applied to improve the existing
algorithms solving Steiner problem. We give such an effective restriction in
terms of geometry of the boundary set.

Recall the well-known partition of an arbitrary finite non-empty subset M
of the plane into convexity levels. We assign all the points of M that lie on
the boundary of the convex hull of M to the first convezity level M' of ).
Notice that M is not empty. We remove M! from M. If the resulting set is
not empty we transform it by the same procedure. Namely, all the points of
M that lie on the boundary of the convex hull of M \ M are assigned to the
second convezity level M* of M. We continue this process until all the points
of M/ lie on some convexity level. The resulting partition M = U*_ M is called
the partition into converity levels and the set M is called the ith converity level
of M. If M = Uk_, M. then we say that M has k convezity levels. We denote
by #(M) the number of convexity levels of the set M. Note that M lies on the
boundary of its own convex hull if and only if it has a single convexity level.
which coincides with M itself.

Now we define a characteristic of a planar binary tree, that introduced in [10].
Let ' be a planar 2-tree. and let @ and b be some edges of I'. Choose the path
« C I' connecting a and b, and let it be orientec from a to b.

Let the plane be oriented. Then the notions “left” and “right” are defined.
Let us move along v from « to b. During this motion, in each interior vertex of
v we turn either to the left or to the right (we omit rigorous definitions hecause
they are obvious but cumbersome). We denote by tw(a,b) the difference between
the numbers of left and right turns. The tw(a,b) is called the twisting number
of an ordered distinct pair (a.b). We put tw(a,a) = 0.

Definition. The twisting number tw(T') of a planar 2-tree [ is the maximum
among the twisting numbers of all the ordered pairs of edges of I': tw(T) =
max, p) tw(a,b).

The following result demonstrates the connection between the twisting num-
ber of a local minimal 2-tree and the number of convexity levels of its honndary.

Theorem 3.1 Let T' be a planar local minimal 2-tree spanning o finite subset

M of the plane. Then twT < 12(3¢(M) — 1) + 5.
If k(M) =1, then the following inverse statement holds.

Theorem 3.2 Let ' be a planar binary tree with tw < 5. Then there is a
local minimal tree Ty, spanning a finite subset M of the plane, such that T,, 1s
planar equivalent to T' and (M) = 1, that 1s, M lies on the boundary of its
own convez hull.

Possible generalizations of these results for the case of so-called weighte
length functional and the corresponding results in planar graph theory are dis-
cussed in [11].
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3.2 Infinitely many different closed extreme networks on
a flat torus

In Section 2 we discussed closed minimal networks in the standard sphere. We
recall that up to isometry there are exactly 10 such networks. But it turns
out. that on closed flat surfaces the situation is quite other. A. Ivanov and
A. Tuzhilin in collaboration with I. Ptitsina obtained a complete description of
closed local minimal networks on flat tori and slat Klein bottles. We omit the
precise statements (the details can be found in [10]). and include only several
non-trivial geometrical corollaries.

Theorem 3.3 In each closed flat surface, that 1s, in each flat torus and in cach

flat Klein bottle. there are infinitely many non-equivalent closed local minimal

networks. Each closed minimal network on a closed flat surface can be non-
trvially deformed in the class of minimal networks.

Theorem 3.4 Any sufficiently small deformation of a closed flat surface through
the class of homeomorphic flat surfaces does not destroy a closed local minimal
network in it.

Let us remark. that a classification of closed local minimal networks in closerl
surfaces of constant negative curvature is not obtained still. Some examples of
such networks can be found in [10]). But the following general result was provecl
by M. Pronin who has elaborated an analogue of Morse index theory for minimal
networks.

Theorem 3.5 A closed local minimal network on a surface of strictly negutive
curvature s rigid, that is. it can not be deformed through the class of local
manimal networks.

3.3 Closed extreme networks on Platonic bodies* surfaces

Another interesting application of the extreme networks theory appears if we
consicer local minimal networks in the surfaces of polyhedra. Let us notice. that
the surface of each polyhedron can be considered as a flat surface with point-
wise singularities corresponding to the vertices of the polyhedron. Networks
on polyhedra appears in applications, and first of all in computer science. due
to the well-known fact that all surfaces are simulated as some close polyhedra.
The detailed discussion of this topic can be found in [10]. Here we mention just
one result concerning the most famous polyhedra — so-called Platonic bodies
(this result was obtained by A. Ivanov and A. Tuzhilin in collaboration with
T. Pavlyukevich (Anikeeva)).

Theorem 3.6 In the surface of each Platonic body there are infinitely many
non-equivalent closed local minimal networks, see 20.
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Figure 18: Minimal network on tori.

Figure 19: Topology of minimal network on torus.
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Figure 20: Closed local minimal networks in surfaces of Platonic boclies.

3.4 Extremality differs from local minimality in Manhat-
tan plane

It is well-known that networks extremality criteria for Euclidean length fune-
tional have local nature. that is. extremality is equivalent to a special structure
of small pieces of the network. It turns out that in general case it is not so. As
an example we consider networks which are extreme with respect to so-called
Manhattan length. We recall that the Manhattan length of a vector in R2 is de-
fined to be equal to the sum of the lengths of its projections onto the coordinate
axes. We assume here that a standard basis is fixed in R?

Extremals of the Manhattan length functional form an important class of
extreme networks. The first works devoted to the investigation of shortest net-
works with respect to Manhattan length appeared in 60th, see [12]. because of
rapid development of electronics and robotics. The interest to the Manhattan
length emerged in view of that the conductors on printed circuit boards Lave.
as a rule. the form of polygonal lines composed from horizontal aud vertical
straight segments, therefore their Manhattan length and their Euclidean length
are the same. A similar situation takes place in robotics. Apparently. the first
systematic investigation of shortest networks with respect to the Manhattan
length (so-called shortest rectangular trees) was undertaken by Hanan. see [13].
Hanan described several important general geometrical properties of such net-
works. In particular, Hanan proved that there is a shortest rectangular tree,
which is a subset of so-called Hanan lattice, that is, the set of all vertical and
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Figure 21: Two types of full shortest rectangular networks.

horizontal straight lines passing through the boundary points. We notice that.
generally speaking, the edges of a shortest rectangular tree can be chosen in
many ways without changing the length of the tree, of course. However. start-
ing from Hanan, see [13] the tradition approach appeared to chose the edges of
such trees as polygonal lines with links parallel to coordinate axes.

Ten years later Hwang, see [14], described possible structure of shortest
rectangular trees under assumption that the given boundary set can he spaunned
by a non-degenerate shortest tree I'g. The latter means that the degrees of all
boundary vertices of the tree Iy equal to 1. In particular, the tree I has no
vertices of degree 2. Hwang proved that in this case the shortest tree has one
of two possible forms shown in Figure 21.

However, nobody succeeded in finding an effective algorithm construeting
shortest rectangular trees. The reason of these failures was explained by Garey M.R.
and Johnson D.S. (1977). Namely, they proved that the problem of constructing
of a shortest rectangular tree is N P-complete. that is, most likely there is no
polynomial algorithm to solve this problem. Due to this fact the studying of
geometry of the shortest rectangular trees becomes even more topical.

As we have already mentioned above. the Manhattan length gives us an
example of the functional for which networks extremality criteria is not local
evenn under an assumption that all the edges of the network considered are
shortest segments joining the corresponding vertices. Consider the following
example: the edges of the network I' depicted in Figure 22 are shortest curves.
however. this network is not critical. In Figure 22 a deformation which linearly
decreases the length is shown.

An interested reacler can find a criterion of extremality of a tree in Manhattan
plane in [11]. This criterion was obtained by A. Ivanov and A. Tuzhiliu in
collaboration with Hong Van Le. Let us mention that the Manhattan length is
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Figure 22: Local minimal non-critical network in the plane.

a particular case of the length in a normalized space. In [11] we give extremality
criteria for networks—traces and for parametric networks in arbitrary normalized
space.
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