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ABSTRACT

It is convenient to split the nonlinear dynamics of galactic disks into the wave and
vortex-dynamics, which could be splitted, in turn, into structures and turbulence.

Nonlinear stationary wave structures — envelope solitons — have a form of spirals and
described by the nonlinear stationary Schrédinger equation.

The wave turbulence is presented by the theory as a turbulence of the Rossby waves,
and it is described by the Charney-Obukhov (or Hasegawa-Mima) equation with a vector
nonlinearity. Its spectrum differs from Kolmogorov’s one, because the medium is anisotropic
— rotating disk — and inhomogeneous. The theoretical turbulent spectrum of the Rossby

waves coincides with observational one for the interstellar medium.
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There are two kind of vortex structures — linear and nonlinear. Linear vortices jointly
with spiral arms compose unique spiral-vortex structure. Recently linear vortices were dis-
covered at 6m telescope in Russia. Nonlinear vortices have not been yet observed in galactic
disks, although the theory predicts their existence in the form both of solitary vortices (cy-
clones and anticyclones) and double vortices (modons). Dynamics of vortices is described by
the Charney-Obukhov (or Hasegawa-Mima) equation with a scalar and vector nonlinearities.

Vortex turbulence in galactic disks must be strong, as a rule.

Also we consider the interaction of a medium with vortices and waves, The vortex-
medium interaction leads to the decay of a vortex and the excitation of waves and wave
turbulence, the nature of which has not been investigated so far.

The interactions of nonlinear spiral density wave with a dissipativeless medium causes
a large-scale 3D convection in the form of four vortices separated by vertical cylindrical
surface r = r,,, and the central z — 0-plane of a disk. For trailing spiral waves the radial
velocity in the central plane of the disk is negative inside the corotation circle and is positive
outside. For leading spirals the situation is vice versa. The large-scale convection can play
a significant role in the redistribution of the chemical composition in the disk.

The interaction of nonlinear trailing spiral density wave with a dissipative medium of
the disk causes accretion radial mass flux inside the corotation circle, which feeds the central

part of a galaxy.

INTRODUCTION

Among different astrophysical objects disks have the most various dynamical structures



and different kind of turbulence. So far the origin of many observed structures in disks is
puzzle as well as turbulence mechanisms of different kinds of disks. The problem of the
galactic spiral structure is waiting for own solution more than one and a half century. The
origin of the Cassini Division with its complex inner structure, the cause of the turbulent
viscosity many orders greater than the molecular one in accretion disks, non-Kolmogorov
turbulence spectrum of the interstellar gas in the solar vicinity of the Milky Way and the
problem of double galactic nuclei not connected with merging are still unsolved problems.
It is convenient to split the non-linear dynamics of astrophysical disks onto the wave and
vortex dynamics, which in turn could be subdivided onto structures and turbulence. The

main topics of the paper are summarized in the Table 1.
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UNSTABLE SELF-GRAVITATING DISK

NONLINEAR DYNAMICS OF MARGINALLY

Special investigations! have shown that the gaseous disks of galaxies are near the

boundary of own gravitational instability. This fact is an expected one as the instability

increases the velocity dispertion and the disk is coming to the boundary of the instability.

If a rotation velocity curve of the gaseous disk has rather large jump or kink that
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is observed in more than one half spiral galaxies?, then hydrodynamical instability can be
developed®*. In this case disk also lies near the boundary of own hydrodynamical instability®.
The reason is similar. As a result of the instability the smearing of the jump begins to grow
until the disk reaches the marginal stability.

The nonlinear dynamics of the marginally unstable self-gravitating disk was analyzed
in works of Mikhailovskii, Petviashvili and Fridman®78 (see also Fridman and Polyachenko®).
As the eigen frequency of marginally unstable disk in co-rotating frame of reference & is small
(@ << Q), the consideration of the problem in 2D approximation is valid’®. Under condition
that only the small region of wave vectors is unstable Ak << ko, where kg is the wave vector

of the most unstable perturbations, the non-linear dynamical equation was derived:

% 3 5
5o = et 5(2-15) (15— 3) I 1)

Here € is the dimensionless amplitude of the azimuthal velocity, 7 is non-dimensional

time,

2 __ .2
Vi = (WG(’“?;; £ << (2)

determines the dimensionless grow rate of the most unstable perturbations, G - gravitational
constant, oo - unperturbed surface density of the disk, & - epicyclic frequency, Qg - unper-
turbed angular velocity of the disk, vs is a “surface” polytropic index. Eq. (1) leads to the

non-linear dispertion relation in the form
3 5
V=Gt 5(2=15) (15 - 3) I 3)

It is easyly seen that this relation describes either a solution propagation or explosive insta-
bility depending on the value of the “surface” polytropic index ~s.
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According to Hunter!! the surface polytropic index for self-gravitating disk can be

expressed through the real 3D polytropic index vy as ¥s =3 — 2/4y. Thus in the region
5/3<vs <2, (4)

which is equivalent to 3/2 < v < 2, the nonlinear stabilization of the instability is possible

at the certain level of the azimuthal velocity amplitude

2
2 2uy

C @)~ 578)

(3)

Under condition of marginally unstable disk (12 << 1) the stabilization is achieved at
low perturbed amplitude. The soliton solution is possible in the region (4) in the form of
an envelope soliton (FIGURE 1). In the absence of the viscosity the soliton has a classical
symmetrical form likes a normal distribution function (FIGURE 1a). But in the presence of
the small viscosity a soliton transforms into the shock wave with oscillating front!? (FIGURE
1b). The shock wave which was predicted in a rotating stellar disk collisionless shock
wave — has a similar form?3,

If 5 < 5/3 < 3/2 — then the explosive instability occurs:

€ 1
{r=0) 7= 1/(4<0)) (6)

where A% = 3(2 — 4)(5/3 - vs)/4.

SPECTRUM OF TURBULENCE OF CLOUDY

POPULATION OF THE MILKY WAY

Up to there are numerous investigations devoted to measurements of the turbulent
spectrum of cloudy population of the Milky Way both in the every gaseous cloud and in
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the ensemble of clouds. In 1955 Kaplan found the correlation function B,, ~ p071 what is

very close to the Kolmogorov spectrum. The systematic observations and the construction
of correlation functions began from 1964. Larson result!4 was close to that by Kaplan: Ay ~
1°38, But later more accurate investigations resulted in more steeper spectrum. Mayers?®,
Henrikson & Turner!®, and Vereschagin & Solov’ev!” obtained the spectrum Ay ~ [05,
Sanders, Scovill and Solomon!® obtained Av ~ 962, Thege spectrums are different from the
Kolmogorov one and to explain them we should take into account the anisotropy.

The attempt to explain the observed spectrum as a result of the turbulence of the
Rossby waves in galactic gaseous disk was made in the work by Dolotin and Fridman?® (see
also?),

In accordance with observational data it was adopted: 1) correlation for the velocity
fluctuations (see above) Ay ~ 1°%; 2) correlation for the density fluctuations'® p ~ [-1,
These correlations mutually agree if we adopt the assumption of viria] equilibrium on all
scales.

The following general nonlinear equation can be derived in the low-frequency approxi-
mation

w <K Qo, (7)

for the solid body rotating selfgravitating cloud?®:

o 1 . j_ %y L) (@W@)1ay
(-a—t + TN [Vix, VJ.];) (VJ.\II - @VLX) T 900 1B 0. (8)

Here w§ = 47Gp,, (@§) = d(wd)/dr; X=p+ V¥, V- is the gravitational potential; g is
the “pressure” function determined by relation © = [dP/p, where P is the usual “volume”

pressure, p is the volume density.




For the small-scale perturbations, corresponding to the case ¥ << 9, Eq.(8) can be

reduced to

8 1 ) . Poldp
(a + 50 V.6, Vl]z) Vig - 290/}0 rhp 0. (9)

The latter equation is similar to well known in hydrodynamics Charney-Obukhov’s
equation®???® and in plasma physics Hasegawa-Mima equation?4. This analogy allows to
use results from the well elaborated fields to describe the dynamics of the perturbations in
gravitating gaseous medium. Particularly in accordance with Sazontov?® and Mikhailovskii
et al.?® the nonstationary solution of Eq.(9) describes Rossby waves turbulence with energy
spectrums w(?) ~ k;32k;2, and w(® ~ ky%2k23,

At the limit of the theory application, k, ~ k, ~ k,, and taking into account char-
acteristic property of the Rossby waves k, ~ k we have w£1) ~ k=38 and w,(cz) ~ k=45,

According to Hasegawa et al, numerical result?? wi ~ k™% The last relation gives?® v~

Jo. Brdk = [[° wpk®dk ~ k=1 ~ ) that is 1) va ~ A%5. On the other hand vVv ~ VU that
is v3/A ~ U/X ~ MrGp,. This gives for the density spectrum 2) py ~ A~1. We see that
the obtained turbulent spectrum?® corresponds to the observed spectrum (see also 29) that

is the evidence of a week turbulence of the Rossby waves in cloudy population of the Milky

Way.
SOLITARY VORTICES IN ASTROPHYSICAL DISKS

For a disk in outer gravitational field for slow-frequency perturbations (7) we derive?®

from initial 3D hydrodynamical equations the following nonlinear dynamical equation for a



solid-body rotating part of a disk, ) = const,

3 ;- . o e ., InC). 8112
a(ﬂ—aﬁAH)—}-U 5~ sns (LA + ( 49) 5y =0 (10)

Here IT is perturbation of IT — the pressure function p or enthalpy; ap = cs/26) is Rossby
radius; Up = 2431} - (Ino). is Rossby velocity; ¢, is the sound speed determined by the

“fat” functions

ol
2 = —_— M
c; _a'<ao_>o, (11)
J(4,B)= 9498 _ 0408 (12)

Oz dy %%
is Jacobian; @,y are Cartesian coordinates with z along radius and Yy along azimuth; the
function C is determined by the equation of state for gas (P = Ap”, where A and v are
constants, v is a polytropic index), and by the second vertical derivative of the external

gravitational potential, VU, in the disk mid-plane:

e L C=ED) *(ﬂ)z’“*“ 13
RN CON A

where A = (y — 1)/(y+1),Tis gamma-function.

Equation (10) contains both the vector (third term) and scalar (last term) nonlineari-
ties. It should be emphasized that the scalar nonlinearity is a consequence of the dependence
of the “surface” equation of state from the external parameter (through the dependence on
external gravitational potential W.). If we start from the usual pure 2D hydrodynamical
equations this term would be overlooked.

Derived for astrophysical disks nonlinear dynamical equation (10) is similar to well-
known in hydrodynamics the Charney-Obukhov equation?!22.23 In plasma physics the sim-

ilar equation was derived by Hasegawa and Mima2*, The use of well-worked-out theory and




laboratory modelling of these equations in hydrodynamics and plasma physics leads to the
following results30:31.32,

Equation ( 10) has two kind of stationary solutions, which describes, respectively, two
types of solitary vortices: single and double vortices, The sizes, a, of these structures are
restricted: 1 < a/H < (R/H)'3, where H is the disk semi-thickness, R is the typical scale
of the density inhomogeneity.

Single vortices: cyclones and anticyclones.

potential and is determined by the sign of (In C).. A cyclone (InC), < 0) is characterized
by a minimum of the surface density and an anticyclone (InC), > 0) by a maximum.

Double vortices: modons. Modon sea., Vortex turbulence.

A double vortex (or modon) represents a cyclone-anticyclone pair and hag one minimum
and one maximum of perturbed surface density?°,

Generation of several modons (a modon sea) results in their interaction and in the
formation of vortex turbulence®®. The vortex turbulence is distinct from the wave one in
principle. Wave turbulence is strong if the perturbed amplitude A is closed to, or larger than,
its stationary value Ayp. Vortex turbulence can be strong under the condition A<< Ay, as the

duration of vortex-vortex interactions is much longer than that for wave-wave interactions.

NONLINEAR RADIAL LAMINATED FLOW AND
LARGE-SCALE CONVECTION AS A MANIFESTATION

OF 3D DYNAMICS OF ASTROPHYSICAL DISKS
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direction in the central plane of the disk, z = 0, and on the disk periphery, near the planes
z = +H. The streamlines are closed by the vertical motions of less magnitude, v, ~ v, J /r.

As a whole, the flow has a form of four vortices separated by vertical surface r — Tc, Where

Te i8S a corotation radius, and the centra] plane of the disk (FIGURE 2). Therefore, the

convection can play a significant role in the overall dynamics of a digk.

density wave. Classical acoustic streaming is caused by the Reynolds stresses in strong
acoustic waves (for a review see e.g.3%)). This phenomenon has beep observed in hundreds
of different laboratory experiments starting with Faraday’s discovery® and described in

numerous theoretical bapers, starting with the ploneering work by Rayleigh3®,

flow, which is a consequence of the dominant role of the Coriolis forces, and implies a flow

direction perpendicular to the applied force.

A radial drift caused by separate azimutha] forces such as (dz'v(pv@')), (p0D/ r0p), etc.
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Unlike an azimuthal drift, a radial drift leads to the redistribution of the surface density of
a disk and it is different in dissipative and dissipativeless disks.

In a dissipative medium a radial mass flux integrated over disk thickness is not equal
to zero and has the same direction as the flow in the plane z = 0. The radial mass can form
some gaps in planetary rings3"®,

In a dissipativeless medium a radial mass flux averaged over disk thickness is zero, and
the flow has a form of four vortices separated by the vertical cylindrical surface r = r, and
the central plane of the disk z = 038 (FIGURE 2).

Note that in both cases — in dissipative and dissipativeless disks — the mass flux
velocity changes its sign on corotation circle: insight the latter the flow velocity is directed
to the disk center, outside the corotation — to the disk periphery. This must lead to a
depression in the surface density distribution just in the corotation circle, that was observed

in the gaseous disk of the Milky Way®®°.

12



REFERENCES

1. ZASOV, A.V. & SIMAKOV, S. 1988. Astrofizika 29: 190.

9. AFANASIEV, V.L., BURENKOV, A.N., ZASOV, A.V., and SIL’CHENKO, O.K.

1988. Astrofizika 28: 243; 29: 155.

3. BAEV, P.V. & FRIDMAN, A.M. 1989. Astron. Tsirk. No.1535: 1-2.

4. FRIDMAN, A.M. 1990. Sov. Phys. JETP 71(4): 627-635.
5. FRIDMAN, A.M., POLYACHENKO, V.L., & ZASOV, A. V. 1991. In

Dynamics of Galaxies and Their Molecular Clouds Distributions, eds. F.Combes
and Casoli, Kluwer Acad. Publ, Dordrecht, Boston, London, p. 109.

6. MIKHAILOVSKIL, A.V., PETVIASHVILL, V.L, & FRIDMAN, A.M. 1977.

JETP Lett. 26: 121.
7. MIKHAILOVSKII, A.V., PETVIASHVILI, V.1, & FRIDMAN, A.M. 1977.

JETP Lett. 26: 341.
8. MIKHAILOVSKII, A.V,, PETVIASHVILL V.1, & FRIDMAN, A.M. 1979.

Soviet Astron. 23: 133.

9. FRIDMAN, A.M., & POLYACHENKO, V.L. 1984. Physics of Gravitating

Systems, Springer-Verlag, New-York etc., vv. 1,2.

10. FRIDMAN, A.M. & KHORUZHII, 0.V. 1999. Appendix I, IT to
A.M.Fridman & N.N.Gorkavyi, Physics of planetary rings,

Springer-Verlag, New-York etc.

11. HUNTER, C. 1972. Ann. Rev. Fluid Mech. 4: 219.

12. FRIDMAN, A.M. 1979. Pisma Astr. Zh. 5: 325.

13



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

FRIDMAN, A.M., PALOUS, J., & PASHA, LI. 1981 Monthly Not.

R.A.S. 194: 705.

LARSON, R.B. 1981. Month. Not. RAS 194: 809.

MAYERS, P.C. 1983. Ap. J. 270: 105.

HENRIKSON, L.N. & TURNER, LR. 1984 Ap. J. 287: 200.
VERESCHAGIN, S.V. & SOLOV’EV, A.V. 1990. Astronom. Zh. 67: 188.
SANDERS, D.B., SCOVILL, N.Z. & SOLOMON, P.M. 1985. Ap. J. 289: 373.
DOLOTIN, V.V. & FRIDMAN, A.M. 1991. Sov.Phys. JETP 72: 1.
FRIDMAN, A.M. & KHORUZHII, 0.V. 1996. In Chaos in Gravitational
N-body Systems, eds. J.C.Muzzio et al., Kluwer Acad. Pub., Netherlands,

p. 207.

CHARNEY, J.G. 1948. Geofysiske Publikasjoner Videnskab-akademi Oslo 17: 3.
OBUKHOV, A.M. 1984. Izv. Akad. Nauk SSR, Ser.Geograph. & Geophys. 13:
281.

OBUKHOV, A.M. 1988. In Turbulence and the Dynamics of the Atmosphere,
Gidrometeoizdat, Leningrad, 1988, p. 409.

HASEGAWA, A. & MIMA, K. 1978. Phys. Fluids 21: 87.

SAZONTOV, A.G. 1981. Preprint Inst. of Appl. Phys., No.3, Gor’kii.
MIKHAILOVSKII, A.B., NOVAKOVSKIL, S.V., LAKHYIN, V.P.
MAKTURIN, S.V., NOVAKOVSKAYA E.A., ONISCHENKO, 0,G, 1988.
Preprint Inst. of Space Res., No. 1356, Moscow.

HASEGAWA, A, MCLENNAN, C.C. & KODAMA, J. 1979. Phys. Fluids 22:

14

==



28

29

30

31

32

33

34

35

36

37

38

39

2122.

. LANDAU, L.D. & LIFSHITZ, E.M. 1984. Fluid Mechanics, Pergamon Press.

. CHIEZE, J.P. 1987 A & A, 171: 225.

. FRIDMAN, A.M. & KHORUZHIL, 0.V. 1996. In “Chaos in Gravitational
N-body Systems”, eds. J.C.Muzzio et al., Kluwer Acad. Pub.,
Netherlands, p. 197.

. FRIDMAN, AM. & KHORUZHII, 0.V. 1998. In “Nonlinear Dynamics
ans Chaos in Astrophysics; Festschift in Honor of George Contopoulos”
(eds. J.R.Buchler et al.), Annals of the New York Academy of
Sciences, 867: 156.

. FRIDMAN, A.M. & KHORUZHII, 0.V. 1999. In « Astrophysical Disks”

(Eds. J.A.Sellwood & J.Goodman) ASP Conference Series,160: 341.

. NEZLIN, M.V. & SNEZHKIN, E.N. 1993. Rossby Vortices, Spiral Structures,

Solitons. Berlin: Springer-Verlag.

- NIBORG, V. 1967. Physical Acoustic, v. 2B, ed. U.M.Mezon.

- FARADAY, M. 1831. Philos. Trans. R. Soc. London 121: 229

- LORD RAYLEIGH 1884. Philos. Trans. R. Soc. London 171: 1.

. FRIDMAN, A.M., KHORUZHII, 0.V. & GOR’KAVYI, N.N. 1996. Chaos

. FRIDMAN, A M. & KHORUZHII, 0.V. 1999. Appendix V to
A.M.Fridman & N.N -Gorkavyi, Physics of planetary rings,
Springer-Verlag, New-York etc.

. BURTON, W. 1976. Ann. Rev. Astron. Astrophys. 14: 275,

6: 334.




FIGURE CAPTIONS

FIG. 1 Schematic view of the envelope solitons generating in a marginally
unstable disks.

(a) The case of dissipativeless disk; (b) Disk with small viscosity.

FIG. 2 Schematic view of nonlinear radial flow induced by a quasi-stationary
trailing density wave. The vertical cut of the disk along the radius is presented.
The radial scale is squeezed. The flow is azimuthally symmetrical and has a form
of four tori.

(a) Structure of streamlines in the flow; (b) The vertical profile of the radial velocity.
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