Committee 5 Draft — February 1, 2000
Non-linear Structures in Natural Science and Economics For Conference Distribution Only

Patterns, Waves, and Solitons in Fluids

Manuel G. Velarde
Professor of Physics
Universidad Complutense
Instituto Pluridisciplinar
Madrid, Spain

The Twenty-second International Conference on the Unity of the Sciences
Seoul, Korea February 9-13, 2000




SYMPOSIUM (CHAIRMAN: PROF. A. KINGSEP)
NONLINEAR STRUCTURES IN NATURAL SCIENCES
AND ECONOMICS

PATTERNS, WAVES AND SOLITONS IN FLUIDS

MANUEL G. VELARDE
Instituto Pluridisciplinar
Paseo Juan XXIII, 1
28040-Madrid, (Spain)

FAX (34) 91-394 32 43
Phone (34) 91-394 3242

ABSTRACT

When energy is supplied to a (nonlinear) dissipative system the possibility exists of exciting
patterns or modes of self-organization that break the initial symmetry (or homogeneity) of the
system. In the case of fluids this possibility is always a consequence of an instability of a given
(diffusive) motionless state or flow field. Here, for illustration, follows a review of recent theo-
retical, numerical and experimental work on the creation of steady (and time-varying) cellular
interfacial convective structures, the evolution from one to another of such patterns and how
defects spontaneously evolve in time, for a given value of the external constraint. Results are
also given about the excitation of (nonlinear) interfacial dissipative waves and (dissipative) soli-
tons or shocks (hydraulic jumps, kinks or bore-like structures) as a generalization to dissipative
flows of the classical work (Korteweg-de Vries-Boussinesq) on conservative systems. Data is also
provided on their common (kinematic) properties in collisions and reflections at walls. Bound
states and space chaotic states are also possible solitonic structures. Most of the results here
reported have dynamical properties of expected universal value and hence may be shared by
phenomena in other realms of science (chemistry, elasticity, neurobiology, chemical engineering;
etc).

1 PATTERNS AND THEIR EVOLUTION NEAR A THER-
MOCONVECTIVE INSTABILITY THRESHOLD

The onset of patterned convective motions in heated fluid layers with a free upper surface
has been extensively studied since the seminal experiments by Bénard (Bénard, 1900; Bénard,
1901; Koschmieder, 1993; Normand et al., 1977; Velarde and Normand, 1980). Depending on
the depth of the layer, d, one distinguishes two basic mechanisms of instability. In sufficiently
deep layers or in containers where the fluid is confined between rigid horizontal plates, the
convective motion settles when buoyancy forces overcome viscous forces and heat dissipation
(Rayleigh-Bénard problem). Alternatively, under microgravity conditions or in shallow enough
layers with an open surface, inhomogeneity in the surface-tension, hence the Marangoni effect




is responsible for the onset of motion (Bénard Marangoni problem). In both cases, the char-
acteristic wavelength of the convective structure is about the depth of the cell or much larger,
depending on whether or not the horizontal boundaries are good thermal conductors. Close to
the instability threshold the system may be described by amplitude equations whose coefficients
depend on the dimensionless numbers of the problem containing fluid properties, parameters
of the boundary conditions and of the external forcing. One is the Biot number, Bi = hd/x,
where h and & are the heat transfer coefficient and the thermal conductivity of the liquid. Its
infinite ‘value’ corresponds to a perfectly conducting boundary while a zero value is that of a
poorly conducting surface.

In this Section we concentrate on the case where buoyancy is neglected but not gravity.
Non-zero gravity, however small, rules out a spurious no-threshold convective flow at zero wave
number. To the Navier-Stokes, continuity and energy equations, in the Boussinesq approxima-
tion (Normand et al., 1977; Pérez-Cordén and Velarde, 1975; Velarde and Pérez-Cordén, 1976;
Ostrach, 1982; Davis, 1987), we add the boundary conditions. At the lower uniformly heated
rigid plate, v = 0 and dT/0z = BiT. At the top open surface, w = 0, 9o /0z = ndu/dz,
80 /8y = ndv/dz (Marangoni stresses), and 8T /8z = — Bi T; also, the Laplace boundary con-
dition, with appropriate hydrostatic part for pressure, and the kinematic boundary condition
for the transverse deformation of the surface hold. T, 7, v and v, and w denote, respectively,
temperature, dynamic viscosity, horizontal components of the velocity, and vertical component
of the velocity. To study the transition between the motionless state and convection, and the
dynamics of the structures that define this convective state, a multiple scale perturbation theory
was developed in the vicinity of the onset of surface tension gradient-driven (Marangoni-driven)
convection. Details can be found in (Bragard and Velarde, 1997 ; Bragard and Velarde, 1998)
where reference is also given to related recent work by other authors. A small parameter al-
lows separating the fast variables that describe the instability and the slow ones describing the
pattern dynamics. For instance, the temperature can be written as:

T = T()[A(X,Y,7) exp(ik® 1) + A2 (X, Y, 7) exp(it® - 1)
+ A3(X,Y, 7) exp(ik® )+ c.c.]

where k(*} denotes three linearly critical-wave vectors oriented at 120 degrees in the horizonta
plane. The amplitude equations in the horizontal plane are (e.g. for A;):

aOdr = oAy + 0y ATAT — acsAi|A1® — aeidr (|42 + | As]?)
o (B0 9,) Ay +ig (609, (4345)
+ife (43 (67 2,) 45+ 43 (69 9, ) 43]
+ifs |43 (K- ¥, ) 45 + 45 (59 ¥, ) 3]

where a; = 0.0038, a; = 0.05 + 0.013Pr™, o, = 0.0203 — 0.0046 Pr', a,, = 0.016 +
0.0049 Pr™" +0.00077 Pr—?, ae; = 0.0217 + 0.003 Pr ™' +0.0018 Pr~2, ay = 0.0021, By = B, =
B3 = B = 0.0016 — 0.0041Pr!, and A = M — M,. Pr = v/x is the Prandtl number and
M = ~orATd/nx is the Marangoni number. AT denotes the (transverse) temperature dif-
ference across the liquid layer depth d. o7 = do/dT < 0, for standard liquids. v and y are



Fig. 1. The onset of BENARD cells in a shallow silicone
oil layer (mm size)heated from below (the solid
support made of copper) and open to ambient air.

Fig. 2 Close-up of BENARD cells (hexagons) and streamlines
with long exposure time.
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Fig. 4 BENARD cells in the form of roll-pattern



kinematic viscosity and thermal diffusivity, respectively 7 = vp, with p the liquid density. Sim-
ilar equations appear for A, and Az (with circular permutation of the indices). The numbers
correspond to the specific case of a poor conducting upper surface and good conducting lower
plate as in standard experiments. These equations are generalized Ginzburg-Landau equations
with advective terms with nonvanishing A coefficients. In general, for these equations there is no
Lyapunov functional hence for some value of the s we may observe no steady behavior. A and
$ measure the (sub/supercritical) distance to the threshold and the strength of the advective
terms, respectively. In the simpler case of Pr — oo we define

A, = % 0.456
¢ - day(aes + 2ag) 7

2
ayQes

Al = 35 ~ —53.4,

ay(oes — Qc;)?
02 (2acs + aci)

— ~ & 179.2.
a1 (acs - aci)'2

Az

Computations and stability analysis show two hysteresis cycles, hence coexistence and bistabil-
ity appears in the intervals [A.,0] and [A}, Ay, respectively.

As an illustration, for a square container starting from random initial conditions (cases i-iv)
or rolls (v) here are some results:

i. (A =50, 8 =0.1). The system evolves to a stationary hexagonal pattern (Bénard cells).
Relative to the case 8 = 0 an increase of 8 only slightly distorts the pattern. The fluid rises in
the center of the cells in accordance with experimental observations. No defects are observed.

ii. (A =75, 8 =0). The system is in a bistable region of hexagons and rolls.

iii. (A =150, 8 =0). The rolls are the preferred structure. At boundaries, the rolls tend
to be perpendicular to the sidewalls.

iv. (A =150, 8 = 0.1). The system does not reach a steady state. On the background of
the roll structure, defects appear moving through the system.

v. (A =150, 8 = 0.1). Here the computation is with the same parameter values as in
iv but with rolls plus noise added as initial condition. First, the structure evolves to rolls
without defects, but as time-goes on the rolls start to bend leading to a ‘zig-zag’-like instability
(Busse, 1978). The system does not show evolution to a steady state. It rather tends to a
labyrinthine structure and possibly interfacial “turbulence,” a form of spatio-temporal chaos
or dissipative turbulence at variance with the (mostly) inertial turbulence of Reynolds and
Kolmogorov (Batchelor, 1953 ; Frisch, 1995 ; Manneville, 1990). Another striking result is the
(periodic) oscillatory alternance of hexagons and rolls in the absence of buoyancy (Bragard and
Velarde, 1997 ; Bragard and Velarde, 1998).

2 INTERFACIAL WAVES AND SOLITONS: SCALING
AND HEURISTIC ARGUMENTS

Let us consider now the liquid layer of depth d heated from the air side or open to suitable
mass adsorption of a “light” component from a vapor phase above, with subsequent absorption
in the bulk hence creating a (stabilizing) thermal gradient inside the liquid layer. Contrary to



the case of a layer heated from the liquid side, here we consider that, if buoyancy exists, the
layer is stably stratified and hence oscillatory motions, waves, and not Bénard cells are to be
observed (Levich, 1965; Sternling and Scriven, 1959; Edwards et al, 1991).

Generally, the problem with Marangoni stresses, gravity and buoyancy, involves several
time scales. On the one hand we have the viscous and thermal scales, tyis = d?/v, ty, =
d?/x, respectively. There also exist two time scales associated with gravity and surface tension
(Laplace overpressure) that tend to suppress surface deformation, tg = (d/g)'/? and teap =
(pd®/0)!/2. The time scale related to the Marangoni effect is tya, = (pd®/|oTB))/?. Here
B = AT/d, and in this section 4 > 0 when heating from below. There is also another time
scale related to buoyancy due to the stratification imposed by the temperature gradient, ¢y, =
(1/|aBlg)!/?. a is the thermal expansion coefficient, positive for standard liquids. As in the
preceding Section the ratios of the time scales give rise to dimensionless groups Pr = ¢, [tvis =
VX, M = tintvis/thar = —orBd /11X, R = tuntuis/t3, = afgd* /vx, G = tuntyis/t2, = gd3/vx,
B = t2,,/t2. = pgd? /o, which are the already defined Prandtl and Marangoni numbers and the
Rayleigh, Galileo and (static) Bond numbers, respectively.

These time scales are not always of the same order of magnitude. For example, for the
simplified problem treated by Pearson (Pearson, 1958) when dealing with the onset of Bénard
cells as the consequence of a Marangoni-driven instability in a liquid layer with undeformable
surface, M ~ 1, but G > 1 and R « M. Indeed, although Pearson neglected gravity his
assumption of undeformability was practically equivalent to gravity being able to keep the
surface level, whatever flows and thermal inhomogeneities exist. He also neglected buoyancy
in the bulk. The characteristic time scale of the problem is ty, = tyis & tmar (at Pr = 1).
For monotonic instability hence the case leading to Bénard cells when heating the liquid layer
from the liquid side there exists a finite limit of the critical Marangoni number as G — .
As oscillatory instability does not appear in the one layer problem with undeformable surface.
We expect that if such instability is possible the critical Marangoni number diverges with
G — oco. Thus the critical Marangoni number should better be scaled with G, as G becomes
very large (G — o) in agreement with earlier studies (Chu and Velarde, 1988 ; Garcia-Ybarra
and Velarde, 1987).

We see clearly how a microgravity or variable-g experiment would allow to see the instability
and the enhancement of the waves. In the very simplified case-studied by Garcia-Ybarra and
Velarde (1987), the theoretical result predicted a universal relationship between temperature
gradient and gravity 8 ~ ¢%/% as g is reduced, and hence a drastic lowering of the threshold as
the effective gravity goes down, a striking result, indeed.

For high enough values of G an oscillatory mode is the capillary-gravity wave. The time
scales tg; and tcap associated with this two-fold wave are much smaller than the viscous and
thermal time scales (at least for Pr~ 1, B ~ 1). Then dissipative effects are relatively weak and
the dispersion relation is w? = GPrk(l + k%/B) tanh(k) (to nondimensionalize w the thermal
time scale is used hereafter, k is the dimensionless wave number in units of d 1). Clearly, the
higher is G (and the wave frequency), the stronger should be the work of the Marangoni stresses
(i-e. the higher is critical Marangoni number) to excite and sustain capillary-gravity waves. For
a standard liquid, o7 < 0, this instability appears when heating the liquid layer from the air
side (M < 0), as expected.

The capillary-gravity wave is not the only possible wave motion in the liquid layer. When,
the Marangoni number is high enough (and negative), there also exists another high-frequency



oscillatory mode. Indeed, when a liquid element rises to the surface, it creates a cold spot
there. Then, the surface tension gradient acts towards this spot, pushing the element back
to the bulk, and hence overstability. High values of M ensure that the oscillations exist. Let
their characteristic time scale be also ty,;. The corresponding wave is called “longitudinal”,
dilational or viscous as it is due to the Marangoni stresses along the surface in contrast to
capillary-gravity waves with essentially transverse motion of the surface (Lamb, 1945 ; Lucassen,
1968). Calculation yields the following expression for the frequency of the longitudinal wave
(in the limit M — —00), w? = —M[Pr /(Pr’/? +1)]k2. Although this longitudinal wave has a
genuinely dissipative nature, the damping rate is asymptotically smaller, O(|M}*/*), than its
frequency. Up to some extent the flow field accompanying the dilational wave is qualitatively
similar to that of the capillary-gravity wave. Potential flow can be assumed in the bulk of the
layer, while vorticity is present only in boundary layers at the bottom rigid plate and at the
upper free surface. The boundary layer thickness is of order of O(|M|~1/4) [O(G~Y/ 4)). For the
longitudinal wave the horizontal velocity field in the surface boundary layer is stronger than the
potential flow in the bulk (by O(|M|*/4)) at variance with the capillary-gravity wave. Thus, the
longitudinal motion is really concentrated near the surface. Furthermore, it appears that with
an undeformable surface (1 « |M| < G), the longitudinal mode is always damped. Indeed,
as already said oscillatory instability does not appear in the one layer (Bénard-Marangoni)
problem without surface deformability. However, if the longitudinal wave is accompanied by
non-negligible surface deformation (|A/| > @), it can be amplified, another striking result.
Clearly, we see again the relevance of the microgravity experiment.

Thus, at G > 1, two thresholds for oscillatory Marangoni instability are expected with
corresponding two (high-frequency) wave modes, capillary-gravity and longitudinal, dilational
or viscous wave motions. As already said, to sustain the longitudinal wave one needs surface
deformability. Alternatively, to sustain a capillary-gravity wave one needs the Marangoni ef-
fect. This is the tight coupling between capillary-gravity and longitudinal waves if they are
to appear and be sustained past an instability threshold. The most dramatic manifestation of
this coupling occurs at resonance, when the corresponding, generally different, frequencies are
equal to each other. Near resonance there is mode-mixing. Namely, the capillary-gravity mode
in the parameter half-space from one side of the resonance manifold is swiftly converted into
the longitudinal one when crossing the manifold; and vice-versa. Another-feature of resonance
is that the damping/amplification rates are drastically enhanced here, namely, O(G3/5) versus
O(G*/*) far from resonance.

If the liquid layer is deep enough and has an undeformable surface the possibility also exists
of coupling dilational waves to internal (negative buoyancy-driven) waves with |R| < G. This
may be called the Rayleigh-Marangoni problem. The role of the capillary-gravity wave is now
played by the Brunt-Viisala frequency w? = —RPr(k?/(k* +n?x2)], (n = 1,2,...), for a stably
stratified layer when heating it from above. Note, that again lowering the effective gravity level
this wave fades away as the stratification disappears. The wave-wave coupling is now between
internal and longitudinal waves. In the absence of the Marangoni effect, no oscillatory motion
via instability is possible, which again stresses the crucial role played by the coupling of the
two wave disturbances.

Although general features of mode coupling are similar in the two problems, there are
differences. In the Rayleigh-Marangoni case we have a countable number (n=12,..) of
internal wave modes, and the longitudinal wave can be coupled to each of them, and hence



we have a countable number of marginal stability conditions. The form of the marginal curves
is qualitatively different. Furthermore, there exists the minimally possible Rayleigh number
(in absolute value), below which there is no oscillatory instability. No such bound was found
for the Galileo number in the first problem (at least in the region where G remains high). A
thoroughly detailed study of all these overstable motions and their corresponding mode-mixing
can be found in (Rednikov at al., 1998; Rednikov at al., 2000).

3 NONLINEAR WAVES: ASYMPTOTIC EQUATIONS

The nonlinear evolution past threshold of either capillary-gravity or dilational waves poses
formidable tasks. Let us then concentrate, for one of the two possible waves, on a simplified
analysis although amenable to experimental test, and let us note the relevance of microgravity.
We already said that the lower the gravity level the easier to excite those waves. Consider the
horizontal liquid layer open to air and heated from above where “long” (a term to be made
precise later on) capillary-gravity waves can be excited. As earlier, the liquid layer is placed
on a flat rigid support but now the air layer is bounded from above by a flat rigid top which
fits well with experimental set-ups. For simplicity, we assume that the layers are of infinite
horizontal extent in one direction and treat the problem in two-dimensional geometry. A rest,
there exists a linear vertical temperature distribution.

Let h; here denote vertical depth and p;j density, v; kinematic viscosity, X; thermal diffu-
sivity and x; thermal conductivity, where the subscripts j = 1,2 refer to the liquid and gas
layers, respectively. The corresponding symbols without subscript denote ratios: P = p2fp,
h=hs/h1, v =1/, x = x2/x1, and &k = Kk2/k1. We assume that h is of order unity, while
v and x are large enough, and p and k are smaller than unity, in accordance with standard
gas and liquid properties. The ratio of the dynamic viscosities, pv, is also small enough. The
Prandtl number for both the liquid, Pr = 1, /x1, and the gas, P = vy/x», are also taken of
order unity.

As we shall only consider “long” enough waves let us define a smallness parameter, €, as
the ratio of the depth to a characteristic wavelength. Then, there are two time scales in the
problem. One of them is defined by heat diffusion, #,, = hi/x1 (as Pr is assumed of order
unity, the viscous time scale, tyis = h?/v; is of order of the thermal one). The other time
scale, tg; = €(h1/g/?) is associated with “long” gravity waves, as g is the gravity acceleration;
€ = G110 i5 defined below. When ty < tgr the heat and viscous effects are predominant
which, in practice, corresponds to very shallow liquid layers or microgravity conditions. In the
opposite situation, ty, > tgr , the dissipation is limited to the boundary layers at the bottom
and, if the Marangoni effect is significant, near the upper surface. In terms of the Galileo
number the first case corresponds to Ge?> < 1, while in the second to G2 > 1. We shall all
consider G 3> 1. Lowering the value of g affects the phenomenon and hence its microgravity
relevance.

The thickness d of the boundary layers can be estimated as follows. We have tgr & ten Where
tgr is as earlier defined while for ty, we now have ty, = d? /x1- Then we get

d 1
h—l ~ el/2Gq1/d (1)



This shows that the boundary layer thickness diverges with G~'/4. Once more we define
dimensionless quantities using suitable scales: h; for length, (gh;)}/? for velocity, (hy/g)'/? for
time, pyghy for pressure in the liquid, pagh; for pressure in the air, fh; for temperature in the
liquid, K!8k, for temperature in the air, where f is again the vertical temperature gradient in
the liquid layer but with a change of sign in the convention taken here: now 8 > 0 corresponds
to heating from above and # < 0 if heating is from below. By pressure and temperature we
denote deviations of the corresponding quantities from their stationary distribution, linear with
the vertical coordinate.

Let = and z be here the horizontal and vertical coordinates, respectively. The bottom of the
layer is taken at z = —1, the free surface at z = n(z,t), and the top of the air layer at z = A,
where ¢ is time and 7(z,t) describes the surface deformation. Thus as already mentioned we
restrict consideration to 2D flow motions. Note that hereafter n does not refer to (dynamic)
viscosity. To search for only “long” traveling wave motions in a shallow layer we redefine the
horizontal variable, £ = ¢(z — Ct), where C is a phase velocity to be determined. In addition
we scale horizontal velocity, pressure and deformation of the surface n with €2, vertical velocity
with €3 and introduce the slow time scale 7 = €3¢. The scale for temperature is determined by
the leading convective contribution to the temperature field which is of order €2 Accordingly,
the equations governing “long” wave disturbances are

u§+w, =0, (2)
) Pr\'*
1/2
elw, — e2Cwe + eluwe + elww. = —p. + € <EG£> (2wee + w::), (4)
2 2 9 _ 1 9
€T —CT; + €uTe + wT. +w=¢ IW {€Tee + T.2) (5)
Us+W.=0, (6)
pr\ 1/2
Uy — CUg + UV + WU, = —TI, + ¢! <é> v{€Ug + U..), (7)
Pr\!/?
W, — ECWe + UW + A WW. = —11. + ¢ (E) v (eWee + W), (8)
pr\ /2
€0, — Che + €Ul + EWH, + W = e (é) % (%0ge +6..) (9)
with the boundary conditions:
at z = —1:
v=w=T= 0, (10)
at z = h:
U=W=6=0, (11)
and at z = n(&, 7):
w = € —Cne+ Eune = W, (12)



v = U, (13)

_ 2|1 oM e
p o= 0-e|p-el@en)|
9 /pr\ /2 .
+ 1€ <5r> [w: — ng (us + € we) + Cuenz] (14)
(u: + Ewe)(1 - n2) + 2€"ne (w, — ug)
MNe o

+W(ﬂ§+Tg+E ’I}ET;) =0, (15)
n+6 = 0, (16)
Tz — 647]§T§ = 02 - 647’]505 y (17)

with >
do _Bhi o _ pghi

_ 1/2
dT pivixa’ o '

M= ; N=(1+6n3)
We clearly see how the correction cannot be neglected when the effective gravity drastically
goes down.

Note that we define M and B with the liquid layer properties. Here u, w, p and T denote
the horizontal and vertical velocity components, pressure and temperature fields in the liquid
layer. U, W, II and 6 denote the corresponding fields in the air layer. M and B correspond
to the earlier defined (static) Bond numbers, respectively. B is assumed of order unity, while
M is taken large enough as, indeed, the Marangoni effect is the control parameter leading to
instability past a (high enough) threshold. The scaling of M with e is provided when solving
the problem. The dynamic properties of air are neglected in the normal (14) and tangential
(15) stress balances. The smallness of x permitted to write the boundary condition representing
continuity of temperature across the surface, T + 7 = x~1( + 6) in the form (16). Thus, & as
well as p disappear from the equations.

Now let us discuss what should be the relation between the smallness parameters € and G~*
and hence the role of variable gravity. As long as we limit ourselves to the case e~1/2G~1/4 « 1,
L.e. to the case when the liquid layer can be subdivided into the bulk where.the flow is potential
and the boundary layers, the most interesting asymptotics corresponds to the case when the
boundary layer thickness and the deformation of the surface are of the same order. From (1)
follows that e 1/2G~1/4 x €2, i.e.

=G0, (18)

(We write “=” to define € in terms of ). Then the effects of energy output (due to heat
and viscous dissipation) and input (due to the Marangoni effect) will be of the same order
as nonlinearity and dispersion. The latter two are in appropriate balance for the ideal liquid
Korteweg-de Vries (KdV) equation for long waves in the shallow layer (Drazin and Johnson,
1989).

Turning to the equations in the air layer, we assume that due to its relatively large kinematic
viscosity (v 3> 1) and thermal diffusivity (x > 1), inertia in the air is no more dominating over
dissipative effects. Then in the most general case

2= 1Pr2G2 1,



The coefficients of the Laplacians in Egs. (7,9) are a? and a?/P, respectively. From (18), in
the liquid layer, Eqgs. (3,5), it follows that they are €' and e!/ Pr, respectively.

To solve the problem (2-17), all components of f = (u,w,p,T,U, W,1I1,0) are suitably
expanded with e.

For convenience we redefine the Marangoni number

MY M
= Pr G

(19)

This modified Marangoni number, m, which is an inverse (dynamic) Bond number is of order
unity and corresponds to the most general case as viscous and thermocapillary stresses are of
the same order in the tangential stress balance. This also means that M is of order of G.

After long and cumbersome calculations, the following evolution equation for surface waves
is obtained:

2 (1 m + e+ (L2 2
Prl!g +1 N 277775 6 2B 77555

2Pyl N 1 d o ge)

" (mPr+Pr1/2 - 1) /2 d_g/€ @-or®
_m 1 d /® QK)

Prl/2 71/2 de¢ ¢ (51_5)1/2

de' = 0. (20)

Eq. (20) is a dissipation-modified KdV equation describing “long” surface tension gradient-
driven waves in a Bénard layer. It significantly generalizes earlier work (Chu and Velarde, 1999;
Velarde et al., 1991; Garazo and Velarde, 1991; Nepomnyashchy and Velarde, 1994) and under
appropriate limiting conditions reduces to the (ideal, standard) KdV equation. On the other
hand another earlier dissipative KdV result with no Marangoni effect (Miles, 1976) follows from
Eq.(20) by setting m = 0, as expected.

4 SOLITONS AS TRAVELING (LOCALIZED) DISSI-
PATIVE STRUCTURES: ENERGY BALANCE

The dissipation-modified KdV equation, (20), possesses the necessary ingredients to have solu-
tions in the form of stationary propagating waves: there is an unstable wavenumber interval,
where the energy is brought by the Marangoni effect and dissipation occurs on the wavenum-
bers belonging to the stability interval. The convective nonlinearity redistributes the energy
from long to short waves, making possible the dynamic equilibrium and the appropriate energy
balance for the dissipative wave. We may expect solutions such as sustained dissipative periodic
wave trains or solitary waves as in earlier mentioned drastically simplified dissipation-modified
KdV equations (Christov and Velarde, 1995; Nekorkin and Velarde, 1994; Velarde et al., 1995;
Rednikov et al., 1995).

For the case of a thin air gap above the liquid layer (h < 1, however h should remain larger
than the surface deformation). In this case, the air motion is dissipation-dominated. Then



6 = n(z ~ h)/h, and Q = n/h. Using this in Eq.(20), we get

2({1- " e (Ao L) 4

2Pr'/? +1 1 1 d [ n¢)
+[m +M— -1 _O_/ 4 — 0. o1
( PrePr/ " hPA >7r1/- £ @-o7* (a1)

The critical (modified) Marangoni number is now

-1
_[2Pr? 41 1 )
= Pr+ Prl/2 * hPrl/? ’ (

An important fact is that m; considerably decreases with decreasing h. Thus to observe sus-
tained capillary-gravity waves as the result of Marangoni-driven instability, the thinner the
air gap the better. Take, for example, a water-like liquid. For illustration choose h; = 0.1,
hz = 0.01 (h =0.1), do/dT = —0.15, g = 10° and Pr = 6 (for dimensional quantities the CGS
system is used). Then, according to Eq. (22), the temperature difference applied to the liquid
layer needed to excite and sustain Marangoni-driven “long” capillary-gravity waves is 15 K,
hence a 150 K/cm gradient. However, in the supercritical case, with Eq.(21) all wavenumbers
are unstable. This is related to the fact that in the limit of high dissipation in the air layer
(h < 1ora> 1), the band of unstable wavenumbers shifts to higher and higher k, where our
long wave approximation ceases to be valid. In this case, to obtain a suitable energy balance to
maintain the waves we must proceed to a higher order approximation (€% in Eq. (21)), hence
m—my x €2).

Finally, let us mention that the vanishing of the coefficient of the ideal KdV terms in Eq.
(21), at m = Pri/? +1, corresponds to the resonance between capillary-gravity and longitudinal
waves. Our approach is not valid in the vicinity of this resonance point. However, note that
the resonance value is always higher than m,.

The energy balance just discussed greatly simplifies and becomes more transparent if we
restrict consideration to the particular case of a stress-free boundary condition at the bottom
of the liquid layer. This drastic simplification does not provide quantitative agreement with
experiment but allows qualitative explanation of most of the phenomena found in experiment.
In such a case Eq. (20) reduces to

M+ (0%)y + Nyyy + 6 [TIyy + Myyy + D(ﬂz)yy + CW)] =0, (23)

where 7(y,t) is a suitable scaled elevation of the surface for one-side, left-to-right steadily
propagating waves. The coefficient D can be either positive or negative, while o and ¢ are
nonnegative. When § vanishes we indeed recover the KdV equation. For the extension of
Eq. (23) to the cylindrical geometry see (Huang et al., 1998).

By multiplying Eq. (23) by 7, and integrating over the full space or one wavelength the
energy E = 1 [n’dz is governed by the balance

(fi—f=5(/ngdz—/ngmdm+2D/nngdm—a/n2dx), (24)
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whose value vanishes at the steady state. The first term on the right hand side of (23) describes
the energy input at rather long wavelengths, due to instability, the second and fourth terms
describe energy dissipation on short and long wave lengths, respectively, and the third term
accounts for the convective nonlinearity redistributing energy as a (feedback) correction to long
wave energy input (for 7 positive, positive if D is positive and negative otherwise). Recalling
that the KdV equation possesses a one-parameter family of solitary waves or cnoidal waves
(periodic wave trains) thanks to the dispersion-nonlinearity balance also existing in Eq. (23) we
note that here the input-output energy balance (24) selects a single wave or a single amplitude
periodic wave train, a bound state or an erratic/chaotic wave train.

On the other hand, when considering the three-dimensional problem as done by Nepom-
nyashchy and Velarde (1994), phase shifts following collision or reflection at walls depend upon
the incident angle, a; (e.g. measured front to front or twice the value front to wall, i.e. by
7/2 — a; ; a reflection is like a collision with a mirror image wave). At the approximate value
of 7/2 no phase shift is expected while for lower collision angles the phase shift has the sign of
phase shifts upon head-on collisions. Higher values than 7/2 (or oy < 7/4) lead to a change of
sign in the phase shift and the formation of a third wave evolving phase locked with the post col-
lision or reflected front (hereafter called Mach-Russell stem). This result for Marangoni-driven
waves generalizes a result obtained by Miles (Miles, 1977) for the dissipation-free (and m = 0)
case. These (kinematic) phenomena were discovered a century ago by Russell (Russell, 1842)
for water waves and by Mach (Krehl and van der Geest, 1991 ; Courant and Friedrichs, 1948)
for shocks in gases. The phase-shift sign in such case is the same as the sign in the overtaking
collisions discussed by Zabusky and Kruskal in their seminal paper where they introduced the
soliton concept (Zabusky and Kruskal, 1965). Finally, starting with e.g. an initial condition of
two nearby ‘solitary’ pulses the system evolves according to Eq. (23) to a bound state or wave
train with unequally spaced crests or a form of chaotic still. All crests have the same value,
hence the same velocity dictated by the energy balance (24) in the steady state, as numerically
observed.

5 INTERFACIAL DISSIPATIVE SOLITARY WAVES AND
SOLITONS: EXPERIMENTAL EVIDENCE

Both mass absorption and desorption, and heat transfer experiments have shown the onset
and evolution of solitary waves, wavetrains and solitons. Research was carried out thirty years
ago, nearly at the time when Zabusky and Kruskal caned the soliton concept, by H. Linde and
collaborators in Berlin (for recent accounts see Refs. Weidman et al., 1992, Linde et al., 1993,
Linde et al., 1993) and more recently in Madrid in collaboration with H. Linde (Linde et al.,
1997; Wierschem et al., 1999; Linde et al., 2000). Related work has also recently been done
by Santiago and Adler at CNRS, Meudon (Santiago-Rosanne, 1995 ; Santiago-Rosanne et al.,
1997).

For the case of heat transfer (liquid depths from 0.3 to 0.8 cm) liquid octane was poured in
square and cylindrical vessels, and in annular channels (1.5 and 2.0 cm inner and outer radii,
respectively). The bottom was cooled by air or water at 20 C and the cover made of quartz
placed at 0.3 cm above the liquid was heated hence establishing in the liquid layer a temperature
gradient. For values of this gradient ranging from 10 to 200 K/cm (in the range predicted by
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Fig. 5 Wavetrain formed in a shallow liquid layer
heated from above (from the air side) or subjected

to adsorption (and subsequent absorption) of a light
surfactant (e.g. hexane on toulene).

Fig. 6 Wavetrain as in Fig. 5 with a circular annular
container.



Fig. 7 Typical sequence of synchronic crest-collisions
of two counterrotating wavetrains as described
in Figs. 5 and 6. The events repeat for long time
(in practical terms quarter of an hour to half hour)



Fig. 8 Typical (solitary) waves colliding at various angles (with
formation or not of the Mach-Russell thrid wave/stem). Liquid
as in Figs. 5, 6 and 7.

% — 2cm

Fig. 9 Beautiful sequence of regular and Mach-Russell reflections
at opposite walls. Liquid as in Figs. 5-8.



theory, as earlier described), solitary waves and periodic wave trains were observed showing
properties similar to the waves also observed in mass transfer experiments.

For mass transfer the following set-up was used. A vessel A, either a cylindrical container
or an annular channel, was filled with liquid (liquid depth 1.8 cm). Two surrounding vessels
B; and Bs, clearly concentric with the annular chanel, were also filled with another liquid.
With pentane in B; and B, either xylene, nonane, trichloroethylene or benzene were used as
absorbing liquid in A, while with toluene as absorbing liquid in A either hexane, pentane,
acetone or diethylether in B; and B, were used. In all cases the results were qualitatively the
same. A glass cover, C, was placed on top of the vessels B; and B, and then when C was
full of hexane vapor, say, it was placed on top of A thus allowing the absorption of hexane by
the toluene liquid in A. The adsorption and subsequent absorption processes are rather strong,
hence create Marangoni stresses high enough to trigger instability and sustain fow motions
and, eventually, waves. During the whole duration of the experiment, hexane vapor was also
allowed to diffuse from the two vessels B; and B, to A.

Observation and recording with a CCD camera was made by shadowgraph from the top
with point-like illumination from the bottom up. For instance, with cylindrical or annular
cylindrical containers, at first, rather violent chaotic motions occur along the surface in A
with waves moving in practically all directions but finally after about one minute when most
of the vapor in C has been absorbed, a dramatic self-organization leads to strikingly regular
wave motion. Long time lasting, synchronically colliding counter-rotating periodic wave trains
were observed in an annular channel for about 50 to 200 seconds while a single (periodic)
wave train with either clockwise or counterclockwise rotation remained up to 450 seconds.
When waves or counter-rotating wave trains collide typical mean wave velocities at the outer
wall of the annular channel before and after collision were, respectively, 2.7 and 1.7 cm/s
(corresponding to angular speeds of 71.4 degrees/s and 45.7 degrees/s, respectively). Thus the
mean wave velocity right after collision was about 64% (with less than 2% error) the mean wave
speed measured before collision. About 0.2 seconds after collision the original wave speed was
recovered. Post-collision trajectories of solitary waves or wave crests experienced phase shifts
like in the case of solitons (Darin and Johnson, 1989; Miles, 1977; Zabusky and Kruskal, 1965).
Reflections at walls also illustrate the solitonic or shock behavior of the waves which occur
with and without the formation of a (phase locked, third wave) Mach-Russell stem according to
the angle of incidence (Russell, 1842: Krehl and van der Geest, 1991; Courant and Friedrichs,
1948). The experiments just described are unsteady, the phenomena observed are complex and,
only recently, there have been clear-cut distinction between mostly surface waves and (mostly)
internal waves (Rayleigh-Marangoni problem (Rednikov at al., 1997b), all of them triggered
and sustained by the Marangoni effect. Further work remains to be done in this field.

6 Conclusion

Theoretical and experimental results have been provided to show how by means of an appropri-
ate balance of energy (convective) patterns and nonlinear waves (and solitons) can be excited
and sustained past an instability threshold. From disorganized motions (heat or mass diffusion)
at and above threshold there appears organized cellular patterns or time-dependent motions
(solitary waves, wavetrains of well defined period and amplitude, and solitons). The energy
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input is crucial for otherwise if those (steady or traveling) dissipative structures were excited
either spontaneously or by some instantaneous forcing they are bound to decay due to dissipa-
tion (heat, mass diffusion or viscous damping). Once there is continuous energy input structures
can be maintained as long as we wish. Furthermore, with the energy balance operating the
kind of structure that can be maintained depends on some other balance that we may add. For
instance, for waves one such balance could be, in dynamic and hence evolving ”equilibrium”,
nonlinearity and dispersion or between nonlinearity and diffraction (of great interest in light or
wave transmission through optical fibers).

We have shown how solitons, soliton-bound states and even spatially chaotic soliton wave-
trains can be excited and maintained in a dissipative system. We have also shown how, for a
given value of the externally given energy input, as time proceeds we may have transitions from
one pattern to another thus illustrating bistability in non-equilibrium dissipative systems.

The results presented here belong to fluid dynamics and, in particular, to interfacial phenom-
ena. However, the basic arguments underlying the results presented have universal applicability
well beyond fluid physics.
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