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observations are considered as manifest variables ruled by an unob-
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1 INTRODUCTION

1.1 Description of PLS

The partial least squares method (PLS) was introduced by H.
Wold(*) to analyse data for which the theory was scarce: large
data bank and primitive theory were the joint incentives which led
to PLS. The PLS algorithm was primarily designed for scalar data. In
1981 some PLS analyses were applied on qualitative data, ie contin-
gency tables (Wold and Bertholet 1981). Our first results seemed
promising and invited to a deeper study. This paper presents some
aspects of PLS amalysis for qualitative data. Let us first give a
briefing of PLS analysis. A comprehensive exposition is found in H.
Wold (1982).

A PLS model involves manifest variables (ie observations) and
latent variables (not observable). The manifest variables are grou-
ped into blocks of indicators, ome block for each latent variable.
There is no restriction upon the number of indicators for a latent
variable. The core of the model is a set of inner relations between
the latent variables. These relations are illustrated by arrows that

link the latent variables. The arrow scheme is the conceptual design

of the model. Note that all information between the manifest
variables is assumed to be conveyed by the latent variables. Here is

for example a simple two-block model:

Figure 1. A two blocks model
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Each block is here composed by four manifest wvariables

(x11.++%14, X2]...%24). The arrows going from the manifest
variables to the latent variables ( El ’52) form the outer model.
The arrow between & and & 1is the inner model. In the basic

PLS design the inner and outer relations are linear.

(*) For a complete exposition and references to earlier works
(1973-77), see H. Wold (1982), Ch. 1.



Without loss of generality the following exposition disregards the
location parameters; all variables are centered to zero mean.

Any PLS model is made up of four kinds of relations. Relations
1-2 constitute the theoretical model, relations 3-4 the estimated
model. The fourth type of relation, as we shall see, can take two

different forms:

Relations 1 The inner model is given by

52 B 91251 + € (1.1)

and is subject to the predictor specification
EEyle) = profye

The latent variables (LVs) are centered to Zero mean

E(§1)=E(Ez)=0 .

Relations 2 The outer relations link the manifest variables to the
LVs of their block :

X = Trlkgl * Vi (1.2)

with predictor specification :

EGel 89) = m 8

Xk in this section is the kth manifest variable
in the first block (similarly for x2j and&y).
As T.. and Ek are unknown, a standardization for

model unambiguity is introduced:
2y _er2y
B(ED=E(E2)-1 .

The T;k are called the loadings. The predictor
specification implies:

E(\ﬁk)=E(v2j)=E(\ﬁk€1)=E(V sz )=0 .

PLS assumes that all information is conveyed by
the LVs , hence:
V..V .)=E(V =E(V_, =
E(V, 2J) E( lkEZ) E( ZJEI) 0

Relations 3 The estimated latent variables (X; for El and X,
for 52 ) are linear aggregates of their indicators

= = Z
X1 E LTI X2 j w2j x2j (1.3)

The wlk and w2j are called the weights of the

indicators X1k and X23.



Relations 4 In the estimation procedure the weights are estimated

using the weight relations. These auxiliary relations

can take two forms, called Mode A and Mode B.

Mode A Mode B
X = wlkxz + dlk (1.4a) X2 = E Ve t d1 (1.4b)
x2j = wzjxl + d2j Xl = ? wzszj + d2

Mode A consists of a simple regression between each manifest
variable and the LVs adjacent to the block it belongs. LVs which are
directly connected by an inner arrow in the arrow scheme are called
adjacent.

If there were more than one adjacent LV, for example a third LV
connected to the first one, then the weight relation Mode A of the
first block would be:

) +.d

+ (1.5)

$13%3

where sy, = +1 or -1 according to the sign of the empirical

*1e = V115125, 1k
correlation between X] and Xg.

In accordance with the standardization for model unambiguity the
weights of block 1 are divided by a scalar g; so that X1 have
unit variance (similarly for X2).

Mode B consists of a multiple regression where the regressors are
the manifest variables and the regressand is the sign-weighted sum
of the adjacent LVs of the block. If there were a third block con~-
nected to the first one, the Mode B weight relation of block 1 would
be:

+ Lw,. x d, . (1.6)

S12%2 * S13%3 T v v 4

It is possible to mix in the same model Mode A and Mode B speci~
fications. Nevertheless the following developments focus exclusively
on the Mode B approach. A discussion of Mode A may be found in Wold
and Bertholet (1981)., Mode A is technically the same for scalar and
categorical data whereas Mode B needs a small adaptation, see below

section 2.3.2.

1.2 Estimation procedure

Before explaining the estimation procedure, we introduce some matrix
notations we shall use,

The covariance matrix of the manifest variables is partitioned
into blocks corresponding to the different blocks of the PLS model.
For our two-block example, the partitioned covariance matrix of the

manifest variables reads



c - \211 212‘ ,
21 22
Cii 1s called the within covariance matrix, Cij i*j is called
the between covariance matrix.

The weights of a block are grouped into a column-vector wj, the
loadings are grouped into a column-vector T. , and the estimated
loadings are grouped into pj. The dimension of these vectors is
equal to the number of manifest variables in the ith block, say
ki.

The estimated LVs are grouped into vectors Xj with N
row —entries where N is the number of observations.

The manifest variables of block i=1,2, after their means have
been removed, are grouped into matrix Z; with N rows and kj
colums. The covariance matrices are now, using (') to denote trans-—

pose :

= ' _ 1
iy z; z,(1/N) Cij zZ} Zj(l/N) (1.7)

i,j=1,2
The estimation process follows an algorithm based on ordinary least

squares procedure that has two stages.
Stage 1

This stage alternates between (1.3) and (l.4) in order to get an
estimation of the weights and the LVs. Here is the description of
the step going from iteration s-1 to s:

The algorithm first computes the estimated LVs of iteration s
using the weights of iteration s-1.

X(s) _

&) =y (s-1) X(s) -z (s-1) (1.8)

w w .
171 2 272
The dimensions of these vectors and matrices are:

Xl(N*l), Zl(N*kl), wl(kl*l)
* * *
xz(N 1, ZZ(N k2), wz(kz 1)
* *
Cqp(ky*ky), €y (R ¥ky)
These LVs enter now the weight relations (1.4) whose ordinary least

squares estimates are given in matrix notation:

Mode A
_l |(s) — |(S-l) — |*(S)

N X2 Z1 = W, 021 = w) (1.9a)
-1,,(s) _ (s-1) _ a*(s)

NOX Tz, = w Cip = ¥y

where the notation wf will be explained in (1.10) .



Mode B
(s) <1 (s~1) -1 *(s) (1.9b)
' ' - ' = '
x2 zl(zlzl) Wy 021 c11 W)
(s) 1 (s-1) -1 *(s)
' 1 = ' = '
X; ZZ(ZZZZS v Cyp Cpy = W5

The weights thus obtained must be rescaled in order to get LVs with

unit variance, consequently the weights are divided by a scalar

gi:

N SO RTAC) g () =\/w',7*(5)c..w:(s) (1.10)

i i i ii

The weights enter now equations (1.8 a or b) to initiate a new iter-
ation. This first stage of the algorithm stops when some conven-
tional criterion is fulfilled. Each step s-1,s,s+l... uses ordinary
least squares estimation. Experience shows that the method con-
verges rapidly.

Stage 2

The weights and LVs estimated in the first stage enter now the
relations (1.1) and (1.2) from which the loadings and the inner
relations parameters are estimated,

est( Wi)= p;= C.; w, . (1.11)

For the two-block model the path coefficient is the correlation
between the estimated LVs,

. = '
est(plz) b12 W) CioWy (1.12)

Comments: Inspection of the equations (1.8) and (1.9) shows that the
ordinary least squares solutions of the weight relations Mode A and

B can be written in a more similar and compact way :

mode A Mode B
' = 1 ' = '
Wy Co1 = 8 ¥ W30 T 8 Py (1.13)
(a-b)
' = ' ' . '
W) C12 T 8y ¥y w1 C1g T 8y Py

and for both modes p; = Ciiwi .



CHAPTER 2. SOME REMARKS ABOUT PLS MODE B AND ITS
APPLICATION TO CATEGORICAL DATA

Section 2.1 presents some properties of PLS mode B estimation, in
particular its relation to canonical correlations analysis. Section
2.2 generalizes the propositions stated in section 2.l1. Section 2.3
introduces some specific adaptations when dealing with categorical
data. Section 2.4 is a discussion about latent variables (LVs) with

more than one dimensiom.

2.1 The PLS Mode B approach and canonical correlations

We have seen in Chapter 1 (1.13b) that the ordinary least squares

solutions of a two-block model are

[ = ' -
¥yC21" 81 P P1 = C11%; (1.13b)
w'c, .= ' = C,.w (again)
1°12° 82 Py Py 22%2 *
These two equations can be joined to give
-1 -1
' = [
¥1€12022621C11 T 81 85 ¥
wie..clc ¢t - w!
2°21°11°12%22 ~ &1 83 ¥ (2.1)

which are the classical canonical correlations relations, Wold (1982).
This is a well known result for two-block canonical correlatiomns. An
interesting problem is whether PLS can generalize canonical corre-
lations to more than two blocks of variables. We shall see how PLS can
solve this question.

Canonical correlations have several extensions to more than two
sets of variables; Press (1972, p. 339) points out three extensions
proposed by Anderson (1958), Horst (1965) and Kettenring (1969). The
following section develops PLS in a way rather similar to Horst's pro-

position.

2.2 PLS modeling with more than two blocks

This section shows how PLS, when based on Mode B, gives an extension
of canonical correlations.

We consider M sets of manifest variables (M>2). The classical ap-
proach of canonical correlations maximizes the correlation between two
linear combinations of the variables of each set. With more than two

blocks, we propose to look for the stationmary point of the sum of the
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absolute value of the correlations between all the linear combinations
of the sets taken two by two, under the constraint that the variance
of each set is unity:

MM
T Iw{ C..

w.| under constraint w!C,.w.=1 , 1=1...M (2.2)
i<] i i7iii

From now on we rewrite the absolute values as s..w!C..w , where s.. is
ij7i’iig ij
either +1 or -1. The Lagrangian is

MM M
= 2 L ! - (w! C..w. - .
L=1L2 Sijwicijwj (1/2) ; ql(w1 C; % 1) (2.3)
i<j i
where qj are the Lagrangian multipliers. The derivatives give:
M
Z' $;¢ 0¥ — 94C;;w; =0 (2.4)
t#i
wiC..w. =1, (2.5)
iviivi

The solution of these equations is not as simple as in the two blocks
case because the Lagrangian multipliers gqj are all different,
Nevertheless these two groups of equations (2.4) and (2.5) are very
similar to the weight relations Mode B for a particular inner model,
here called Complete Causal Chain. This model has the following stuc-
ture:

The first LV is the only exogenous LV, all subsequent LVs

depend on this first. Considering M LVs, there will be M-1

arrows going from the first to the others. The second LV

depends upon the first, and is directly influencing the

M-2 subsequent LVs.

For a three LVs model, a Complete Causal Chain can be (among
five others)

oY 0

More generally, the matrix of the inner relations of a

Complete Causal Chain is
( )

0
0
0
0

111... 10 :
1



Equations (2.4) and (2.5) enter the PLS algorithm under the form:

M
_ *
z Sy CiliCitwt = W, (2.6)
t¥i
*, / %* *
= . '
W, wi\(l/ wi G, w.) (2.7)

The still unsolved question is about the convergence and uniqueness of
the algorithm. Paul Horst (1965, p, 587) confesses in a related situ-
ation that no rigorous proof is known.

The previous discussion relates to a particular model (Complete
Causal Chain). An important feature of PLS is to provide a variety of
specifications for the inner relations. Let us now consider another
model where only some of the correlations enter the summation (2.2).
The author of the model then has built a path model in accordance
with his assumptions; consequently the optimization involves only the
covariances which occure in the inner model. Here are two illus-

trations with three-block models:

(:;) Complete Causal Chain,

1 . . inner model design matrix.

C (::) A specific model,

1 . . inner model design matrix.

2.3 Qualitative data and PLS mode B

2.3.1 Modeling of categorical data, PLS mode B

We present here the way PLS carries over to categorical data, ie con-
tingency tables. Our working example will be a three-way contingency

table with N observations (cases). Each of the N observations takes
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the form of three column-vectors X]p,X2n,X3p. The dimensions of
these vectors are the dimensions of the margins they refer to. All the
entries of these vectors are zero except at the row corresponding to
the characteristic of the nth observation. If the nth case shows the
second characteristic in margin 1, then the transposed vector of this

variable reads

Xin =(0100....0) . (2.8)
*

We group then these three transposed vectors in three matrices Z7],
Zf and Zf with N rows and k] ,ky and k3 columns, where Kkj
is the number of categories in the ith margin.

*
We have (1/N)2'jZy= f; , where ¢  is a vector of omes and fj

N

the observed marginal frequency of the ith variable (ie the ith mar-
. . * L3 .

gin). Substracting from Z; its mean we obtain the centered observa-

tions of the ith margin

2. =12° Z f! (2.9)
i o1 N1 ° ¢

Here is briefly an example of a simple model for a three-way table il-
lustrated by Figure 2.

A latent variable (X;,X2,X3) 1is attached to each margin. All
information between the margins is transmitted by these LVs; this
information is conmveyed according to a flow chart given by the arrows
that link the LVs . The estimated inner relation is X3= b13Xl+b23X3+e3
The N case values of the LVs for the ith margin are estimated by

X; = Z;w, , (2.10)

where Xi is the vector of the N case values of the ith LV.

Figure 2. A PLS model applied to a three-way

contingency table
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Here, as always when each margin defines just one LV, the PLS model
has an interesting feature: the input necessary for the estimation -

algorithm involves only information from the two-way marginal tables,

ie the faces of the cube. The input covariances of the algorithm are

* %
C,. =12z!2z., (1/N)=2! 1z, (1/N) - £.£! . (2.11)
1] 1 ] 1 ] 1]
More complex specifications can be developed which introduce inter-
actions among variables; see Wold and Bertholet (1981) for an appli-

cation with PLS Mode A.

2.3.2 PLS Mode B adaptation

Mode B is not directly applicable to qualitative data matrix because
the within covariance matrices (Cjj) are not full rank: (2.11) mul-
tiplied by %ki is zero. A unique solution for the loadings cannot be
found, nevertheless each LV is uniquely determined as we shall prove
it in this section.

The weight and loading relations for the three-block model are

1 = ' ' = ' ' 1 = '
V2 %21 T &1P) "1 C1a T &Py $13¥1%13*% $23¥;Cp3™ 833 (2:12)

2 = Py Cy3¥s3= Py (2.13)
At each step of the algorithm, the relatioms (2.12) allow us to com-
pute the loadings (pj). From (2.13) one has to calculate the weights
(wi) in order to introduce them in the next step.

For categorical data the matrix Cjj cannot be inverted because
its rank is kj-1. But the rank of the bordered matrix of the linear
systems (2.13) remains k-1, hence a set of solutions exists, we may
choose one of them. It is easily verified that the rank of the bor-
dered matrix 1is kij-1 because ikf pi=0 (postmultiplying (2.12)
by ikiand using Cjj iki=0 imply ‘ﬁépi=0).

Recall that Cj; =diag(f;)-f;f;' where f; 1s the vector
of frequencies of the ith margin of the table so that (2.13) reads

= 1 - ' =
Cyy Wy = diag(f)w, £.(£) w.) P;- (2.14)

The product fiwi is constant for each of the elements of P;- Otherwise
we see that the case values of the LVs computed by (2.10) do not de-
pend on this constant, the LVs are thus uniquely determined. Taking

this constant to be zero, the solution of (2.14) is immediate matter:

= a1 -1 -
w, = diag(f;) P; and Ci3¥; = pye (2.15)
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The constraints on the parameters are now:

iﬂ.pi =0 (2.16)
i

flw. =0 (2.17)
i'i
! =

wip; 1 (2.18)

(2.16) is demonstrated in the previous paragraph. Multiplying (2.15a)
by £;' and using (2.16) proves (2.17). The standardization rule for
unambiguity of the model is in matrix notation w'jCjjwi= 1, use
of (2.15b) proves (2.18).

Now, the case value of the LVs according to (1.8) and using (2.17)
are given by the weights of the category of each observation. If, for
example, the nth observation belongs to the second category in the ith
margin, its case value LV is wjg.

2.4 Latent variables with many dimensions

2.4.1 The second dimension of the between covariance matrices

Methods based on canonical correlations or principal components can
proceed step by step in order to extract successive dimensions from
the data. PLS can do it in a similar way. The dimension of the LVs and
of their related parameters is now indicated by a superscript.

The outer relations with two dimensions in the LVs read

;= pgl) xgl) + p§2) X§2) + ugz) (2.19)
with
(D, (1) _ . (1 (2),(2), _ . (2)
XX = by, rX) 7K = byt

ng) = Z.wgd)
i i'i

We present here the algorithm proposed by H. Wold; it will be noted
that J.-B. Lohmoeller introduced another approach based on simul-
taneous rotations (1981).

As usual when dealing with multidimensionality, it is assumed that

the correlation between the LVs in a same block is zero:
]
r(xgd)xgd Dyao  ard'. (2.20)

To fulfill this constraint, Wold uses the residuals of the outer

relations of dimension 1 as input for the second PLS dimension

x, = pgl)xgl) + ugl) —_ ugl) - ng)x§2) + UEZ). (2.21)
The covariance matrices are now
1 .
(1 - pg ) wi(l))Cij(I - w§1) pg(l)) itj . (2.22)
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In the process of estimation the within covariance matrices remall
unchanged, and this gives interesting properties for the parameters

(see below).
The third dimension is estimated similarly : the outer residuals of

the second dimension become input for the third dimension.

2.4.2 Some comments

It can be easily demonstrated that the various dimensions of a LV are
uncorrelated, but the dimensions of LVs belonging to different blocks
are not expected to be uncorrelated. There are some particular situ-
ations where they are orthogonal, for example the two-block model
leading to canonical correlations, or when there is a unique adjacent
LV in the weight relation. It is too early in our research to under-
take a general discussion about this important question.

The properties of the parameters and LVs with many dimensions are:

1)
ng) is orthogonal to ng ) for d#d’', (2.23)
1]
wi(d) pgd o1 if a=a', (2.24)

1
wi(d) pid o0 if ded'.

Demonstration of (2.23) is evident from ordinary least squares
properties. Proposition (2.24) is interesting because it shows that
the case values of the LVs of dimension larger than 1 can be computed
with the original variables so that it is not necessary to use the
residuals of the outer relations of the previous dimension. This
appears clearly in equation (2.2la); multiplying it by the weights of
the second dimension and using proposition (2.24) we infer:

wf(z)x. = w!(z)ugl) = ngz
i i i i i

This property is due to the specification of the between and within

covariance matrices which enter PLS estimation Mode B.

2.4.3 Recounstruction of the data

After all dimensions have been extracted from the ith block, we can
reconstruct the original variables by the use of the kj-1 conse-~
cutive vectors of weights and loadings (kj-1 is namely the rank of

the within covariance matrix Cjj).
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When a model involves blocks of unequal sizes, the question arises how
to estimate more dimensions from the model than the smallest block
allows to. This problem is discussed in Apel and Wold (1982) where a
solution for PLS modeling is also given.

If all dimensions have been extracted and the parameters grouped

into matrices denoted with capital letters, we obtain:

C.. =2:Z2.(1/N) = P.W!Z'Z.W.P! = P.R..P! , (2.25)
1] 1] 111 J 3 1] 1 1] ]

P; is the matrix containing the consecutive estimated loadings of
the ith block, Wi is the matrix of the successive estimated weights,
Rjj is a matrix with kj-1 rows and kj-1 columns. This matrix
contains the correlations between LVs of different dimensions of two
blocks. As already mentiomed it is diagonal when the jth block is the
only adjacent block to the ith. We shall use this property in section
3.3.
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CHAPTER 3. CONTINGENCY TABLE ANALYSIS : INTERPRETATION
AND EXAMPLES

3.1 Why apply PLS to contingency tables

PLS modeling being distribution free, cf Wold (1982), it seems feasible
to apply it to contingency table analysis. We are aware that many tech-
niques and powerful tools have already developed in this area. We think
PIS is a simple and informative method which brings new insight for
prediction analysis.,

In the PLS approach, the notion of prediction is understood as fol-
lows: The variable to predict, say xg, is distributed in accordance
to its marginal distribution, empirically fj, so that any forecast of
an outcome of x9 will be based on fy. If some extra information is
given, for example the knowledge of an x] event, it is possible to
improve the prediction by the use of a more accurate distribution for
x2. Then the marginal distribution of x3 is no more optimal
because, when x] has occured, x is distributed in a different way.
If x} brings no extra  information -ie if the distribution of x,
remains unchanged- x] is redundant and can be neglected.

To clarify this proposition we imagine first a two-way table where
the cells are all independent, ie the frequencies are the products of
the margins. Many models based on a chi-square or log-likelihood ratio
will give very encouraging adjustment coefficients because few para-
meters are sufficient to describe entirely the cells of the table. In
such a case PLS will be definitely discouraging because there is no
predictive power in that table. No information about any variable can
help to predict the other one more accuratly than its marginal distri-
bution.,

Let us now imagine another artificial example, a square table where
all cells are zero except on the diagonal. Here again most of the cur-
rent models will describe the entries of the table by the use of com—
Pplex specifications (for example the presence of interaction parameters
in a loglinear model, or the need for models based on eigenvalues
decomposition to involve all the consecutive eigenvectors). In the PLS
approach, we expect a very simple model to give the best prediction.
Simplicity in PLS specification must originate from simplicity in the

data, to summarize these last two paragraphs:
simple structure of the data =-> simple PLS specification

no predictive power in the table =-> bad adjustment coefficients.
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Another important feature of PLS lies in the notion of causal chain.
The contingency table is not considered as a set of numbers, but as an
organized structure of data and flows of information. The inner model
specification is the direct translation of the assumptions that the re-
searcher introduces in his data.

3.2 Interpretation of the parameters

In PLS Mode B as defined in section 2.4 the weights and loadings are
related by the relation pj; = diag(f;j)w; so that the following
discussion focuses essentially on loadings, correlations between LVs,
and path coefficients of the inner model.

In this exposition, the manifest variables are in their original
form, consequently the location parameters appear explicitly.

As in a previous paper (1982), we propose to interpret the para-
meters with reference to an approximate linear model.

The outer relations stated in relation (l.1) are

L T gi + v, (3.1)

. Y s . . k. row .
Xi» Tyis Tpi» Vi are kj ro vectors
The x; are distributed according to a multinomial distribution; hence

E(xi) = prob(x,) = Toi (3.2)

The estimated location parameters are the marginal distribution of the
variables. Now by analogy to (3.2) we define

E(x,|g;) = mo; * Ty &5 © prob(inEi) . (3.3)

In the sample procedure the distribution of x; changes from case to
case around a mean value (Tg;) which is its marginal distribution.

When the correlation between £;and another LV, say gj , is high, the
two corresponding margins are correlated. This correlation coefficient
is an indicator of dependence between the two margins. It is a global
measure between margins, whereas the loadings are related to the dif-
ferent categories which compose a margin.

The relation (3.3) shows explicitly that the higher the absolute
value of a loading, the more is the corresponding category influenced
by its LV. As an extreme case, a zero coefficient in a loading vector
means that the category has the same relative frequency in the margin
as within the table. We propose here an example of a 4%3 contingency

table?
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Table 1. artificial two-way contingency table

25 125 | 100 250
RO U O

1 100 | 149 250
(-) (-) ] (+)

70 150 : 30 250
(+ (+) \ (-
4 125 ¢ 121 250
(-) (0) : (+)

150 500 400 1000

Inner model: X2n= b12nxln+ esn .

The estimated outer relations are:

.25} [ .00 {.1] 1.24]
x, = .25 + -.24 Xl + u x, = .5 + 14 X2n+u2n
mo 25 40l R n [.4J k.38)
5| |-s)
The inner relation : X, = 45X, + e
2n 1n 2n

In this example we do not report on the LVs and their case values.
The estimated correlation between LVs is 0.45, the table is not inde-
pendent when considered as a whole, note that the Cramer coefficient of
association for this table is .26 . Nevertheless the first row is inde-
pendent of x5. The probability of an outcome of the first category of
X] -we write here x]] - 1is not influenced by the outcome in the
second margin. As the LVs are supposed to convey all the information
between the margins, the estimated outer relation of the first category
of x] reads:

prob(x , | X,) = E(x /|X)) = £,+ 0 X .

The signs of the loadings help to interpret the entries of the
table. Comparing the three columns of the table with their expected
values under the independence assumption, we write (+) if the observed
frequency is larger than the frequency under this independence assump-
tion, (-) if it is smaller, and (0) if it is equal.

The two first columns behave in a very similar way, but the last one
is just opposite in sign. The estimated loadings for xy reflect this
feature: both loadings of columns 1 and 2 are positive (.24,.14)
whereas the third is negative (-.38).

The sections 3.3-3.5 present numerical applications of PLS which
will illustrate the above propositions of interpretation. Sectiom 3.3
and 3.4 use artificial data, Section 3.5 analyses real-world data which

have been analysed by other authors.
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3.3 Partial independence

In this section we apply the PLS algorithm to contingency tables with a
specific structure, namely partial independence. Two variables are said
to be partially independent if, under the control of a third one, they
become independent. This conceptual design is similar to the zero par-

tial correlation of scalar variables.

If X, and X, are partially independent with respect to X, then

prob(x2x3|xl) = prob(x2|xl)prob(x3|xl) (3.5)
but prob(x2x3) # prob(xz)prob(x3) .
Under this condition the covariances matrices are related,

C diag(fl)_1 (3.6)

21 ¢

€13 = Cp3 -

The interpretation of the partial independence in terms of predic-
tion states that if one tries to predict x3 when x; is known,
then the extra information of xp is null, ie the variable x5 does
not play any role for predicting x3 when x] is given. Note that
X9 and x3 can be reversed in this statement.

Using this assumption we formulate the inner relation :
(::)\ B ,:7:::

X, = b13x1 + b23x2 * e, (3.7)

that is

Estimation of contingency tables which obey relation (3.6) give
automatically the path coefficient bo3= 0 as expected. This path
coefficient results from an ordinary least squares estimation of (3.7,

to specify,

b,, = (r

2y
23 )/(l—rlz) =0 (3.8)

23 ~ T12%13

where rij is the correlation of Xi and Xj'

The expression (3.8) is interesting because it bridges scalar and
categorical modeling. The partial correlation between the LVs X9 and
X3 after removing the influence of Xj is

corr(X2 - rlle)(x3 - rl3X1) (3.9)

2 2
(r23 - r12r13)/ V(1- rlz)(l - r13)

2
13

A 2
blz\(l - rlZ)/(l -ri.) .
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The partial correlation coefficient is zero at the same time as the
path coefficient. When partial independence holds for qualitative data,
the estimated LVs, which are scalar variables, behave in the same way:
their partial correlation is zero. There is a parallelism between sca-
lar and categorical data.

Until now we have not demonstrated that assumption (3.6) implies
by3= 0. The demonstration involves the recomstruction of the data of

section 2.4.3. The relation (3.5) then takes the form

P! = P R,.P!

oo -1
diag(f;) © P R)4P3 = P,R,;P3

PoRotP1

where P'diag(fl)—1P1= WP = I

1 1 k.-1

1
which gives:

" = v
PoRyjR13P3 = PoRyqPy - (3.10)

A sufficient condition for (3.10) to hold is

Ry1R13 = Ry -

The diagonal elements of Rjj are the correlations between consecutive

dimensions of the LVs. Now, the chosen specification of the inner model

leads to
r( ng) ng) ) #0 d =1... min(k.,k.)
1 ] 1° )
p(x(D @y C g grar
1 J

The Rjj matrices can be partitioned in a square diagonal matrix con-
taining all correlations of the LVs that are different from zero plus a

null matrix. Hence for kj < kj we have

Rys =[§iag(r(xgd) xgd) ) % 0 ] d=1...k-1

where the order of R.. is (k.-1)*(k.-1).
ij i j

OQur sufficient condition is now :

(d)_(a@) _ _(d)
T19T13 = Igg . (3.11)
Here is a numerical illustration for an artificial table with four

margins and 3%4%2%4 cells. The marginal distributions are :

fi = ( .1700 . 3000 .5300 )

fé = ( .1743 .1209 . 3466 .3582 )
fé = ( .9552 . 0448 )

fi = ( .1360 .1984 .2672 .3984 )
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The partial independence was imposed on the variables 2 and 4 with
respect to 1, that is

PfOb(X2X4[xl) = prob(lexl)prob(x4|x1) .

The following path coefficients were estimated:

(::) .3361
&)~ -

<::) =70046

The first variable is the most important for predicting the fourth. The

second does not bring any information, whereas the third has a small

importance.

3.4 Simpson's paradox

This section shows a simple example of what is called Simpson's
paradox. Here again artificial data describe a three-variable situ-
ation, namely sex (Male, Female), a medical treatment (T=yes, NT=no
treatment), and the result of the treatment (R=succes, NR=failure). The
odds ratios for the two populations of males and females show undoub-
tedly that the treatment has a negative effect, but once the two popu-
lations have been joined, the apparent effect is just the opposite.
This example is inspired by Upton (1978, p. 43).

Table 2. Artificial three-way contingency table

F«M|[ T NT
R|[110 160
NR {150 520

R} 10 100
NR {100 500

Inner model:

sex

treatment

The inmer relation reads:

x3 = b13X1 + b23X2 *+ ej. (3.12)

The outer relation of "result" including location parameters reads:

Xy = £ 4 PyXy + Uy . (3.13)
Substituting (3.12) in (3.13), we obtain the so called substitutive
predictive relation, cf Wold (1982):

xg = £5 4 py(b X, +b,X2) + Pgeg + Uy . (3.13)
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Taking the deterministic part of (3.13), we define by analogy to (3.3):
prob(x3|X1X2) = E(x3|XlX2) = f5 + py(b, X+ b23X2) (3.14)

_(29), Foas |,
_[.71)+ f.as}( 55X, + .08X,)

The estimated LV for sex and treatment are:

sex: Xl treatment: X2
M: -.57 T : 1.62
F : 1,76 NT : -.62

Substitution of the LVs values for treatment and sex in (3.14) shows
that treatment has a negative effect because it lowers the probability
of success. The influence of sex is more important than treatment; com-
pare .55 against .08, Otherwise females are more successful than males.

Note that, for this specification, the only data the algorithm needs
are the two marginal tables sex*result and treatment*result. The
joint distribution of the three variables does not participate the
estimation. This example shows that PLS 1is able to give accurate
results even with incomplete data sets. This is a very important
feature because it often happens in practice that the only information
consists of two-way contingency tables, the joint distribution being
unknown,

3.5 Real-world data example

This last section presents real-world data quoted from Goodman (1973);
they have been analysed by Lazarsfeld (1948,1968) and Lipset et al.
(1954).

Reproduced in the Table 3, these data cross-classify responses of
266 people. Each person was interviewed at two successive moments. The
questions were similar at both times: 1) vote intention (replublican/
not republican) 2) opinion of a particular candidate (for/against a
republican candidate). The answers form a four-way contingency table.
The succession of the interviews in time gives a general framework to
the structure of the path models one can apply to these data.

Goodman proposes to develop the logarithm of the odds ratio as a sum

of parameters which are directly related to those of the usual
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loglinear model. These parameters are selected in accordance to one of
the 30 models that could describe the data. These parameters play the
role of path coefficients. Two models which fit the data very well are

reproduced below.

Table 3 Observed cross-classification of 266 people

interviewed at two successive points in time.

second interview

vote intention V2 + + - -

candidate opinion 02 + - + -

first interview

vote intention candidate opinion

\Y C

1 1
+ + 129 3 1 2
+ - 11 23 0 1
- + 1 0 12 11

Figure 3 Path diagram of model HS5, which adjusts the margins
(AB), (AC), (BC), (BD), (CD). Likelihood ratio = 1.46
df = 6. Goodman (1973/1978, p. 190)

D 30

1.22 -1.03 1.71

D ()

Figure 4 Path diagram of model Hl4 which adjusts the margins
(AC), (BD),(CD). Likelihood ratio = 8.62, df = 8,
Goodman (1973/1978, p. 195)

O @

1.68

D) o ()
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We shall now compare PLS models to the above results. We shall dis-
cuss three PLS models. The first is the Complete Causal Chain with the
opinion of the candidate in the first interview (Cy) as exogenous LV.
The two other models are similar to those reproduced from Goodman's ar-

ticle. Note that PLS does not have arrows pointed in both directions.

Figure 5 Path coefficients of a Complete Causal
Chain PLS analysis

O 7w =

.53 .17

() s (&)

Multiple correlation coefficients (R2) of the LVs
corresponding to margin:

Vl C \Y

.28 .67 .90

Interpretation: The voting attitude at the second moment is mainly
influenced by the voting attitude at the first time (Vj) and by the
candidate opinion at the second interview (Cy). It seems that there
is no direct memory of the opinion in the first interview; the in-
fluence of C] is transmitted by V; and Cs.

This general model is useful as a first approach to the data because
it helps to develop more simple models by removing the less predominant

relations,

Figure 6 PLS model similar to H5 (path coefficients)

O

)
]

Multiple correlation coefficients (RZ) of the LVs

corresponding to margins:

v Cy Yy

.28 .59 .90
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Figure 7 PLs model similar to Hl4 (path coefficients)

.88

.10

O D,

Multiple correlation coefficients (R2) of the LVs

corresponding to margin:

C, V)

.59 .90

The ranking order of the parameters is much the same in both loglinear
Hl4 and PLS modeling, the only difference occures in the model H5 for
the path coefficients between C1-V; and Cy-V,.

The PLS path coefficients are factor loadings of LVs with unit
variance and zero mean, hence their sizes are directly comparable. In
Goodman's approach the path parameters are logarithms that enter an ad-
dition equation, their range is much larger than in PLS.

Goodman's path model has been developed for dichotomous variables,
hence the generalization of his method based on odds ratios 1is not
straighforward. In PLS approach, the number of categories in a margin

does not interfere at all with path modeling technique.
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CHAPTER 4. JACKKNIFE TECHNIQUES

4.1, Jackknife techniques for contingency tables

Strictly speaking, jackknife methods should reestimate the model for
each of the N observations. This may be time-consuming, so that simpli-
fied methods based on grouping data are often used.

For contingency table the jackknife may be applied in a very

economic way. Let us take a simple example, a two by two table:

20 12
T=1,; 10 N=53 .
The removal of one observation gives one of the four following tables
19 12 20 11 20 12 20 12
11 10 11 10 10 10 11 9' .

Because of this automatic grouping the number of estimations needed for
jackknife techniques is equal to the number of cells and not to the
number of observations. This is important, for in practical situations

there are often many more observations than cells.,

4,2 Jackknife estimates of standard errors

We have applied the technique of the previous section to the real
world data cross-classification by Lazarsfeld as modeled by our Com-
plete Causal Chain in section 3.5.

The formulas are, using Efron and Stein's notation (1981):

est(var(s)) = (N-1)/N I (s(i) - 8(.))? (4.1)
s(.) = (1/N) ) s(i) . ’ (4.2)

S is a statistic i:Qariant under any permutation of its arguments.
S(i) is the value of that statistic when the ith observation has been
deleted from the sample.

Under the classical - often unrealistic - assumptions of indepen-
dence and identical distribution, Efron and Stein show that the jack-
knife estimate of variance is positively biased, its expectation being
larger than the true variance of the statistic S.

The jackknife estimates of the Complete Causal Chain (cf figure 5)

are given below:

parameters estimates jackknife variance
estimates

bi3 .8813 .0022

byg .3336 .0042

bo .5329 .0029

boj -.0906 .0027

b4 .5885 .0042

b43 .1700 .0058
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4.3 Stone-Geisser testing for predictive relevance

Stone (1974, p. 121) develops an interesting property of his prediction
approach which we shall use here because there is no need of reesti-
mation of the parameters. In Stone's notation let the prediction func-
tion be

pred(y) = i akbkck(X) s (4.3)

where cp(x) are specified functions, ay are 0 or 1 corresponding to
a "choice of variables'", and by are parameters to be estimated.

This formulation is useful for exploring a model by the use of the
substitutive predictive relations; cf (3.13). Again we shall illustrate
by our model for the real-world data of Lazarsfeld.

The endogenous variable to be predicted is the voting attitude at
the second interview Vy (with LV Xj) by the use of Cj,V] and
Cy (whose LVs are respectively X5,X] and X4). We have seen that
the path coefficient (bp3) that links C; to Vp is close to zero
so that we shall explore if it is meaningful to omit C; in the
prediction. We shall test if this simplification lowers the predictive
power of the model, that is

pred(x3) = byX; + byX, + b, X, (4.4)

against

<4

pred(X3) = b (4.5)

%
1351 P4s¥y -
The parallels with Stone's relation (4.3) are
c1(x) = X4 co(x) = Xo c3(x) = X3
by = by3 by = b33 b3 = bs3
and we test aj=ag=a3=l against aj=aj=1l.

In this test procedure the functions cy(x) are given; 1ie the
weights and LVs are not reestimated. To repeat, the purpose of this
test is to explore a complex specification to see if some relations are
candidates for simplification. Note that, regarding (4.4) and (4.5)
as different models, X; and X7 should not be the same in both
cases. If they were reestimated for (4.5), then the difference between
the two loss functions would be smaller than the actual one.

Stone's loss function is

L(a) = (1/N) I (y, - pred(yi,a,S(i))z , (4.6)
i
where pred(y;j,a,S(i)) is the predicted value for y;, using specifi-
"on

cation "a'", when the ith observation has been deleted from the sample

during the estimation.
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Stone shows that the general loss function (4.6) for the linear form

(4.3) may be calculated in a simple manner:

L(a) = (/M) t §Gy; - ;@) / (-, @)}? (4.7)
1

where yj(a) 1is, for fixed aj, as and aj, the least squares
prediction without any deletion in the sample. Ajj(a) is the diagonal

element of

A(a) = X(a)[k(a)'x(a)]—l X(a)' (4.8)
which is the projection matrix of the least squares estimation of (4.4)
or (4.5). In the jackknife estimation (4.7) there is no extra
estimation except the matrix inversion in (4.8).
Stone-Geisser's test criterion, denoted Q2, is an RZ evaluated
without loss of degrees of freedom, cf Wold (1982). It will be noted
that
Q2 =1-1(a) .

The results calculated for the models (4.4) and (4.5) are very similar:
model (4.4): L(a) = .1065, Q2 = .8935
model (4.5): L(a) = .1079, Q2 = .8921 .,

The difference is very small, showing that the PLS model maintains

nearly the same predictive relevance if the relation C}->Vy 1is

omitted.



CHAPTER 5

STRUCTURE ANALYSIS AND PLS

5.1 Introduction

This Chapter presents a recent field for PLS applied to qualitative
data. The four previous chapters refer essentially to prediction and
dependence. Here we shall focus on the pattern of a contingency table

as modelled by a Guttman scale.

5.2 Guttman scales

Guttman scales are of frequent use in psychology and education. For
example, a sample of school children are asked two questions (often
called items). The answers to these questions take only two forms
yes/no or success/failure, usually denoted by the codes 1 or O.

The psychological or pedagogical theory often supposes a pattern
for these answers. For example it may be expected that children who
are able to solve a multiplication problem must also be able to solve

an addition problem. This intuitive simple theory leads to the scheme:
multiplication ==§> addition

Conversely it may happen that children can solve the addition item
but fail in the multiplicative one. Denoting by 1 the success and by 0

the failure, the theory expects the following pattern:

addition multiplication

0 0
1 0
1 1

The answer <0 1> is in disaccord with our above assumed intuitive
theory and therefore is not included in the set of expected answers.
A Guttman scale is the hierarchic organization of such items. The

scale may be generalized to more items; here is a four-item scale:

item 1 item 2 item 3 item 4 (5.1)
0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1
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In this stringent pattern there is a perfect hierarchic organization
of the items. It may happen that two items are considered as equiva-
lent in the scale: only one or the other, or even both, can be
successful without changing the order of the others. The pattern is

then as follows:

0 0 0 O (5.2)
1 0 0 0O
1 1 0 0 1 01 0
1 1 1 0O
1 1 1 1

This situation is called a biform scale. More complex patterns can be
imagined: see H. Jorg Henning (1981),

Experimental data will often deviate more or less from the theore-
tical pattern and the question onme has to answer is '"to which extent
do the experimental data support the structure assumed by the
theory ?" . It is of course expected that some observations won't
agree with the scale, but their frequency must be small enough for the
assumed theory to be still relevant,

We shall present here a way PLS can analyse the experimental data
for uniform scales. Our example is a four-item Guttman scale in the
uniform pattern (5.1). Each item is now considered as a margin of a
four-way contingency table with 2x2x2x2 = 16 cells. According to the
theory some of these cells are empty. Using the scale given in (5.1)
we shall consider the following theoretical contingency table in which

the non empty cells are crossed (X).

item 4 (5.3)
item 1 item 2 item 3 0 1
0 0 0 X .
0 0 1 . .
0 1 0 . .
0 1 1 . .
1 0 0 X .
1 0 1 . .
1 1 0 X .
1 1 1 X X
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5.3 PLS and uniform Guttman scale

Using a probability approach the uniform scale can be described by a
set of conditional probabilities, namely:

prob(xi =1 xj =1)=1 if 14j i,j = 1,4, (5.4)

A smaller but equivalent set of conditions is

prob(xi = ] xj =1)=1 if j=1+1 i=1,2,3 (5.5)

where x; denotes item i.

In Chapter 3 we have noted the similarity between prediction and
conditional probability. As PLS is a predictive approach it seems
feasible to apply it to the analysis of Guttman scales.

As we have four items, we shall build four corresponding LVs. Their
indicators are the two answers (yes/no). The PLS inner relations will

be the Complete Causal Chain, see 2.1.

item 1 item 2 item 3 item 4 (5.6)

l no l I yes I yes| no yes| no
\/ e~ \/
~

U
@’“‘*@j;@"jz@

\\ ///

It will be demonstrated that the PLS estimation of this inner
specification on the theoretical table (5.3) gives the following
results:

the arrows which do not link two consecutive LVs disappear,

ie the corresponding path parameters become zero.

The starting form of the inner relations to be estimated read:

X, = by, X *u,
Xy = by X, + by, X, +ug
Xy =01y Xy + by Xy # by Xyt u,

Then the results of the estimation are:

Xy = by X} +u,
X3 = byy X, + ug b3 = by, = by =0 . (5.7)
Ky = b3y X3+ u,
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Note that the direction of the arrows can be inverted without
changing the argument; the estimated inner relations in this case take
the following form:

X X

+ (5.8)

X, =b,, X

3% byy X, +uy g = b3y X3 +u, 1 = by X5ty

The demonstration is given in the annex.

We know that some path parameters are expected to be zero when the
theoretical model of the uniform scale holds. If experimental data
analyzed by PLS give the non-consecutive path parameters sufficiently
close to zero, then one can accept the theoretical model. As we have
not postulated any distributional form for the population, it is not
possible to apply any classical statistical test procedure. Instead we
may use the jackknife standard errors of the parameters as empirical
criterion., In the next section we present three numerical examples as

illustration of the sensitivity of the analyses.

5.4 Numerical examples of Guttman scale

On the next page is a table showing three sets of artificial data for
a four-item uniform Guttman scale. The same inner model (5.7) is used
in the three situations. The bottom part of the table reports the path
parameters. The first example uses the theoretical structure of a uni-
form Guttman scale, the non empty cells being the same as in (5.3). In
the second example some "unexpected" observations have been introduced
into the cells that should be empty according to the assumptions. In
the third example the cells corresponding to the theoretical model
have been multiplied by ten in order to increase the discrepancy bet-
ween expected and unexpected observations.

What about more complex scales? - We have actually no general meth-
od for the way of studying complex scales. Sometimes it may be
feasible to mix two items of the original structure to obtain a unique
item which takes information from its two constituents. Going back to
the biform scale (5.2) we see that the items 2 and 3 are "equivalent",
ie they both lead to the same structure <1 1 1 0> following alter-
native ways <1 0 1 0> or <1 1 0 0>, In this case, these two items
could be combined by the logical "or" without changing the general
structure of the scale. Our proposition is then to build a new item,
say item 23, which joins items 2 and 3 according to the following de-

finition :
item 23 = item 2 or item 3

This change leads us to a three-item uniform case which again is

easily analyzed by PLS.
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Uniform scale examples

Items example 1 example 2 example 3
1 2 3 4 0 1 0 1 0 1
0 0 O 10 . 10 1 100 1
0 0 1 . . . 2 . 2
0 1 O . . 1 1 1 1
0 1 1 . . 1 . 1 .
1 0 O 25 . 25 3 250 3
1 0 1 . . 2 . 2 .
1 1 0 18 . 18 2 180 2
1 1 1 26 78 26 78 260 780
b12 -.487 -. 419 -. 477
(.082) (.023)
b13 .000 .035 . 005
(.080) (.011)
b14 . 000 .033 . 006
(.075) (.011)
b23 -.750 -.651 -.738
(.068) (.018)
b24 . 000 -.081 .013
(.092) (.014)
b34 -.709 -.550 -.689
(.084) (.018)

The standard errors have been computed using the jackknife technique
of Chapter 4.

In the artificial table with the theoretical structure (5.3) the
path parameters which do not link two consecutive LVs are zero. In the
second example thirteen observations have been put into empty cells of
the previous table. Now all path parameters are different from zero.
The proportion of these "unexpected" observations amounts to 7.6% of
the total number of cases. In the last example this percentage amounts
to 0.8; as it is weaker, the estimated parameters are much closer to

the theoretical values.
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ANNEX ¢ UNIFORM GUTTMAN SCALE

The answers to four items are of the 0/1 form. We postulate that the

pattern of the answers is given by the following set of answers:

item 1 item 2 item 3 item 4 (c.1)
0 0 0 0
0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

We shall demonstrate that when the model (C.2) is estimated by PLS
for a sample of answers that belong to the pattern (C.1), then
bjj =0 if j# i+ 1,

X2 = b12 X1 ’ + u2 (C.2)
X3 = b3 X} +byy X *+ug
X4 = b14 x1 + b24 X2 + b34 x3 + u4

To show this, we shall use the inner relations in their OLS estima-
ted form. Let us write the covariance matrix of the estimated LVs and
then the solution of normal equation for the last inner relation
(X4),

( )
i |
X) ¢ 1 Tig T3 | 14
: |
X5 T 1 ™23 | T24 = Rex - .
: Fe b IR T TR
X3 Ty ray 1 I Ta Ryx : Ryy (c.3)
X, ¢ T4l a2 Tas : b
Hence:
¢ \ ¢ 3 ¢ 3
by, 0 0
- -1 - _
b24 = R . ny = 0 = 0 b34 (c.4)
b b 1
34 | ®34] J

where the first term is the general solution and the two last hold for:
the uniform Guttman scale. To demonstrate this property, we note that
in the last term Ry 1is proportional to the third column of a matrix
for which R;i is the inverse. This column is then the third column

7of Ryx. To prove our theorem, it is sufficient to show :
Rxy is proportional to the last column of Ryy. (c.5)

This statement does not depend on the number of items; the following

demonstration is general.
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We know that the elements of Rxy and Ryy are correlation
coefficients given by:

(c.6)

r.. = w' C.. w.
ij -i “ij =3

In this annex we underline the vectors, that is yi = [wio wiI]

The subscript io means "0" type of answer to the ith jtem, whereas

il means "1" type of answer.

We write the condition (C.5) as:

r.. =qr. .7

ij i j+l ’
where q # 0 and i smaller than the index of the LV explained by the
inner relation; in our example (C.4) i<4. By (C.6) this condition

reads:

gi Cij ¥ =1 w: C.

We have then to study the properties of Cij. As the weights are
centered to zero with respect to the marginal distributions, we may
work with the product matrices instead of the covariance matrices,
that is:

w! Cij yj = gi [Fij - fi fj] v, = yi Fij LE (c.8)
Fij is the cross distribution of items i and j; f; is the marginal
distribution of item i.

Let us now introduce some notations. For j>i the pattern of answers

allowed by the assumptions (C.1) is:

item i item j frequency (c.9)
0 0 £99 = £9
ij i
1 0 glo
13
1 1 f%% = f}
1] J

fg is the frequency of "0" type answer to the ith item;

fi; is the frequency of answers "1" to item i and "0" to item j.
f%! is the frequency of "1" answers to both items.

1]
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The Fjj cross tabulation now reads:

item j (c.10)
0 1
0 £ 0 £
i i
item i
1 glo £l £
ij j i
£° gl 1
] J
From (C.10) we have
£2 = £ - £19  £or a1l >i and (c.11)
1 ] 1]
fl= gl a £ for a1 poi. (c.12)
1 J 1)
Recalling that £ w, + f% w., = 0, we have
i 10 1 1l
— _(¢© 1
Wi = (fi / fi ) Vioe (c.13)

Using (C.11), (C.12) and (C.13) the correlation coefficients are

computed as follows:

w! C.. w. = w. w, £ - %/ f% Y=r.. (c.14)
=i 7ij =j io " jo i i i ij

' - o _ £© 1 -
wi C; 341 ¥541 T Yio Y4l o fi Q fi / fi ) TP el (c.15)

Hence r, 5417 T (wj_'_1 o / wjo)’ or equivalently Ti3 T 4Ty g
which is the proposition (C.5) to demonstrate.
The model in which the arrows are inverted reads
X3 = b43 X4 + ug (c.17)
Xy = byy X, + by X4 * Uy
Xy = b4y Xy * b3y Xy +by Xy +uy

Following a demonstration similar to the above argument, one shows

that bj; = 0 if j < i-l.
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Technical note

Our computer program (FORTRAN simple precision) is the LVPLS program
by J.-B. Lohm&ller (1981).



