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Bookstein Soft Modeling and Biological Shape
I. The Comparison of Biological Forms as a Latent Variable

In his classic On Growth and Form of 1917, the great British
natural philosopher D'Arcy W. Thompson introduces the study of
form-comparisons thus:

...The morphologist, when comparing one organism with
another, describes the differences between them point by
point, and 'character' by 'character'. If he is from time
to time constrained to admit the existence of 'correlation'
between characters ..., yet all the while he recognizes this
factor of correlation somewhat vaguely, as a phenomenon due
to causes which, except in rare instances, he can hardly
hope to trace; and he falls readily into the habit of
thinking and talking of evolution as though it had proceeded
on the lines of his own descriptions, point by point, and
character by character.

... But when the morphologist compares one animal with
another, point by point or character by character, these are
too often the mere outcome of artificial dissection and
analysis. Rather is the living body one integral and
indivisible whole, in which we cannot find, when we come to
look for it, any strict dividing line even between the head
and the body, the muscle and the tendon, the sinew and the
bone. Characters which we have differentiated insist on
integrating themselves again: and aspects of the organism
are seen to be conjoined which only our mental analysis had
put asunder. The coordinate diagram throws into relief the
integral solidarity of the organism, and enables us to see
how simple a certain kind of correlation is which had been
apt to seem a subtle and a complex thing.

But if, on the other hand, diverse and dissimilar fishes
can be referred as a whole to identical functions of very
different co-ordinate systems, this fact will of itself
constitute a proof that variation has proceeded on definite
and orderly lines, that a comprehensive 'law of growth' has
pervaded the whole structure in its integrity, and that some
more or less simple and recognisable system of forces has
been in control. (Thompson 1961[1917]:274-275)

In this manner Thompson explicitly identifies the object
under discussion, namely the relationship between biological
forms, with a latent variable (LV): an abstraction for the
efficient explanation of diverse, covarying comparisons

distributed over the organism. His identification of this LV
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with a "system of forces" reflects the biomechanical
understanding typical of his era, obsolete now; what remains, the
idea of a "simple and recognisable" geometrical pattern of
explanation (Figure 1), has fascinated mathematical biologists
and morphologists from Thompson's day to the present.

The endurance of Thompson's insight owes to its felicitous
blending of two previously unrelated descriptive traditions. The
latent variable of which he speaks had hitherto been studied in
biology and in mathematics separately, where it went by two
different names. The biologist knew it as homology, the rules by
which parts of different organisms were understood to correspond,
whereas the mathematician knew it as the pointwise deformation,
"Cartesian transformation," acting to distort a picture plane or
other specifically geometric representation of form. The
identification of these two formal models in the study of a
single empirical problem lies at the foundation of modern

morphometrics (Bookstein, 1982a; Bookstein et al., 1985).

Landmarks. To reliably quantify the forms of organisms
varying in shape, the biologist needs to pass from a homology of
parts to one of (mathematical) points. The observed form is
thereby abstracted into a configuration of landmarks having both
a geometric location and a biological identification: for
instance, "the bridge of the nose, there on the x-ray." The two
attributes correspond to the two sources of information combined
in the LV model. Each landmark, located in all the forms of a
series, is a systematic one-point sample of the homology

function. For instance, the bridge of this nose is homologous to
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the bridge of that nose, by definition, and so the point-
deformation which is the homology of these two x-rays must map
this point to that one.

Such a representation of deformation, the mention of one
point at a time along with its image, is mathematically clumsy.
From configurations of landmarks the researcher usually passes
directly to an explicit homology function by an interpolation
(Bookstein, 1978) that is smooth in-between the landmarks at
which it is observed. For empirical comparative studies of
biological form, a LV may thus be operationalized as a
geometrically smooth effect on shape: a systematic shape
difference spatially distributed over the interior of a
configuration of N homologous landmarks. Because a LV is an
explicit deformation, we will be able to diagram it directly as
an effect upon the typical form. 1In place of dry parameter
vectors of inner and outer weights, we will be able to visualize
the actual geometrical quantities explained by the LV, the

spatial pattern of correlated changes in form.

Morphometric variables. 1In practice, a LV is inseparable
from its manifest indicators. What sort of indicators might be
appropriate in the study of deformation? One might guess that
the natural space of indicators is spanned by the 2N Cartesian
coordinates of the N landmarks under study. However, it is not
biological forms separately that we seek to measure, but
relations between forms; these are not measured by vectors (two
coordinates per point) but by symmetric tensors (three parameters

per point), as will be explained in Part II. Although landmark
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coordinates make up the raw archive of our data, their comparison
requires a different, richer set of constructs: the shape and
size measures that can be derived from the coordinate records by
manipulations of greater or lesser complexity.

A size measure is a function of the landmark coordinates
which is linear in geometric scale and which is computed
homologously from form to form. Examples include the distances
between landmarks in pairs, the distance from one landmark to a
point 30% of the way from a second to a third, etc. By a shape
measure we mean, in essence, the ratio of a pair of size
measures. Such ratios will be of dimension zero in geometric
scale. The more familiar shape measures are functional
transformations of such ratios; for instance, an angle is the
arc-tangent of the ratio of distances which is the tangent
function, Particular comparisons of form can always be described
by a systematic pattern of size measures representing
geometrically parallel or perpendicular extents upon the
organism—the biorthogonal grid to be sketched in Part III.

These patterns encapsulate the LV under study with optimal

descriptive efficiency.

II. 2Analysis of a Single Triangle of Landmarks

In landmark-based morphometrics, the universe of indicators
of form has only a finite number of degrees of freedom. The
coefficients of any LV are capable of carrying all the
information needed to reconfigure the landmarks appropriately.

It is convenient to introduce the study of these LVs and their
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indicators, the shape and size variables, using a measurement
space of the simplest possible structure. When landmarks are
taken three at a time, in triangles, there are only three degrees
cf freedom for form-description: two for shape and one for size.
We therefore begin the study of deformation with shape changes of
triangles. The LVs which result from conventional soft modeling

in this context can be made manifest as new indicators, and

remain manifest even when we restore size information (the third
degree of freedom) to an analysis. The later examples of Part
III deal with more extensive configurations of landmarks. 1In
these models for LVs, the indicators corresponding to one
triangle will make up one first-order LV; the set of these will
make up a block of their own, each contributing to the

representation of a deformation as a second-order LV.

Shape coordinates for a triangle. Shape measures, by
definition, are ratios of size measures. In the study of
triangles, the most convenient size measures are the lengths of
edges. Let us select one edge of the triangle AABC—say, the
edge AB—and scale the triangle so that the length of that edge
is constant at 1.

After scaling so, we may register landmark A at the
Cartesian point (0,0) and landmark B at the point (1,0)

(Figure 2). 1If landmark A were originally at (x,,7,), B at
(xB,yE), and C at (xc,yc), then the normalization on edge AB

assigns landmark C the Cartesian coordinates (vl,vz) vhere
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Because all triangles of the same Euclidean shape will yield the
same point (vl,vz), all information about the shape of the

triangle AABC must be coded in this coordinate pair.

One degree of freedom for shape variables. Consider any
shape variable that can be computed from a triangle of landmarks.
Figure 3a, for instance, illustrates the variable /ACB. Any
shape variable is constant on some curve through C; the angle
/ACB happens to be constant along the circle through A, C, and B.
Neighboring curves, in this case other circles through A and B,
correspond to neighboring, nearly equally spaced values of the
shape measure.

In a small region of this plot, this set of curves can be
approximated by a family of parallel, equally spaced straight
lines, Figure 3b. The shape variable varies fastest
perpendicular to these curves, in the direction of the axis G,
the gradient of the shape variable. The smaller the variation in
a population of triangles, the better a shape variable is
characterized by the direction of its gradient.

There is thus one family of linearly equivalent shape

variables for every direction through the point C. For instance,
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the direction G in Figure 3c is the gradient of the angle /AQC,
where Q is the point at 1.5 on the x-axis (in the coordinate
system with A at 0 and B at 1). Another measure with the same
gradient is the ratio to AB of the distance to the midpoint of
AB. These two unfamiliar shape measures are linearly equivalent
at C, as are all others bearing the same gradient there.

Every useful shape variable has a gradient in some
direction. Since there is a semicircle's worth of directions
around any point C, there is only a semicircle's worth of
linearly different shape variables in the vicinity of a typical
shape AABC. For any two distinct shape gradients Gl' G2 at C,
every other shape variable G is linearly equivalent to (i.e., has
the same gradient near C as) some linear combination aG, + bG2 of

G, and G

1 2°

The effect of changing the choice of baseline—for instance,
from AB to BC—is to rotate all three edges AB, BC, CA of the
mean triangle by the same angle, and rescale them all inversely
to the change in baseline length. For any triangle, the
constructed (vl,vz) following upon this change will differ from
the former (vl,vz) by that additional rotation together with the
same rescaling. Therefore, under change of the choice of
baseline, the entire (”1'”2) scatter corresponding to a sample of
triangles mainly rotates and changes its scale. To this order of
approximation, any statistical analysis in the (vl,vz) plane
vhich is invariant to rotations, translations, and rescaling will

yield the same findings whatever baseline was chosen for the

construction. Our soft models will all have this property, and
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hence will represent analysis of shape independent of the

(arbitrary) choice of a size measure.

From gradient to shape variable: making a latent variable
manifest. The obverse of this reduction of shape variables to
gradients is the realization of particular gradients by
particularly useful shape variables. For triangles, the
deformation modeling any statistical summary of change in the
configuration may be taken as geometrically uniform. Such a
deformation may be represented everywhere inside the triangle by
the principal axes of its strain tensor: the directions which
bear the greatest and least ratios of change of length between
the poles of the comparison. These directions must remain at 90°
over the course of the contrast or trend they describe, just as
the axes of an ellipse, longest and shortest diameters, lie at
90°. Figure 4 summarizes this representation and indicates how
the principal strains may be observed directly by reference to
two measurable distances upon the form. The shape aspect of this
change is best summarized by change in the proportion between
these two measured distances:; incorporation of information about
size change further specifies the ratios of change for the
distances separately.

The particular proportion optimally reporting an observed
mean shape difference in the (vl,vz) plane is constructed as in
Figure 5. A small displacement Ar of the mean form (r,s) in this
plane corresponds to a principal cross of length-change ratios
differing by |Av|/|s| and oriented at *45° to the angle bisectors

between Ay and the baseline (Bookstein, 1984a). Form by form,
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each of these lengths is measured as a transect from one vertex
through a computed aliquot of the opposite edge; as these
endpoints correspond according to the model of uniform
deformation, the segments are homologous over a sample, and so
their lengths are proper size variables. The shape variable
which is the ratio of these measured lengths has gradient
precisely along Ar. Whatever the net size change, distances
along one of these axes have the algebraically largest mean ratio
between poles of the contrast, and those along the other have the
algebraically smallest mean ratio, of all distances homologously
measured over the set of triangular forms.

In matrix notation, this is the polar decomposition for an
affine transformation (Bookstein, 1978, Chapter 8), its
representation as a product 0(6')D0_l(0) of three simple
transformations. Each O is a rotation ("O" for "orthogonal")
taking principal axes from horizontal and vertical to their
orientations as observed in the starting form (6) or the ending
form ("), while D is a diagonal matrix of the differential
extension ratios along the two perpendicular principal
directions. If the analysis is to be drawn upon a single form,
as when the second configuration is free to rotate, then the

leftmost factor O(6 ) may be omitted.

Indicators for a single triangle. A sample AAiBici of
triangular forms may be normalized upon their edges A;B., form by
form. Information about the size of AAiBiCi is thereby lost; but
the shape of each triangle, unaltered by this maneuver, must be
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embodied explicitly in the position of the movable vertex C;.
Shape variation of the population of triangles can therefore be
studied in the scatter of the points Ci after this construction,
Figure 6a, and shape change may be studied in the scatter of
pairs (Ci,C;) at two times, Figure 6b.

To adumbrate a true LV (the mean transformation) having the
matrix DO(6), a 2x2 matrix, we use as indicators the two vector
components (1,0)L3O'DO, (0,1)L3O'D0, where Lg is the column
vector encoding the position of the third landmark using the
other two landmarks as baseline that the (arbitrary) rotation O’
has sent to horizontal. From the observation of these two
components we can reconstruct D and 6 up to the change of scale
of the baseline.

In all the soft models to follow, triangle by triangle the
shape indicators will be such pairs of coordinates (vl,uz).
Linear combinations of these will always be sums of simple
regressions, Wold's "Mode A," because the gradient directions
represented by the shape coordinates vir v, are always
geometrically orthogonal vector components whatever their
covariance in a sample. The first-order LVs corresponding to
these little blocks of two will always be linear predictors of
some other variable in the model, whether manifest (size, or age
group, or sex) or latent (future shape or shape change). To the
formula for the LV on such a block, the weighted combination of
Y1 and V5, Ccorresponds a gradient in the shape space of its
triangle. That gradient, playing the role of Ay in the preceding

discussion, yields up a particular shape measure, ratio of two
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distances at 90°, which measures it perfectly. Therefore, to
each first-order LV corresponds a new manifest indicator
identical with it as estimated case by case.

Under a suitable null model (Bookstein, 1985), change in
perimeter is nearly uncorrelated with the shape coordinates for a
variety of triangular configurations. (It is exactly
uncorrelated in the case of circular landmark location error for
an equilateral triangle.) When size is measured in this way,
change in mean size and change in mean shape may be interpreted
as separate aspects of the net change observed in a triangle of
landmarks, with all coefficients of the soft model to be
estimated Mode A. Such an interpretive decomposition is valid
even if this size.measure is correlated with shape in the sample
under study. Alternatively, size may be regressed on shape by
using any pair of the (vl,vz) coordinates. The result is a
canonical description of allometry, the covariance of shape with
size, which may be used to predict size from shape or shape from

size.
I11. The Computation of Deformations by Soft Modeling

The geometric and algebraic machinery is now entirely in
place for describing systematic effects on shape and size in
terms of latent variables of deformation. The present Part of
this essay presents examples of the soft modeling of deformation
for research designs at various levels of geometric or temporal
complexity. These examples hint at a wider role for the

generation of indicators after estimation, hints expanded in Part
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Iv.

Arrow diagrams including triangles. In the models to
follow, each first-order LV stands for one triangle and
represents a tensor, such as that of Figure 4, acting on that
triangle. The position of these LVs in the model, together with
the role of second-order LVs if any, will vary from example to
example. The first-order LVs will be indicated by circles, after
the usual semiotics of arrow diagrams; but inside each circle is
sketched the triangle the LV represents. Inside that triangle
there will appear, after the model is estimated, a diagram of the
manifest shape variable (ratio of a pair of distances at 90°)

equivalent to the first-order LV identified.

A cephalometric data base. 1In craniofacial biology it is
customary to produce x-rays of the bony cranium and jaws in a
standardized fashion. The patient's head is placed some six feet
from the x-ray tube and a few inches from a film cassette; the
central beam of rays passes along the line joining his ear holes
and intersects the film plane at 90°. There result X-ray images
on which edges of anatomical structures can be reliably traced in
a conventional abstraction of normal anatomy. For instance, two
kinds of curves are used—projections of true space curves, and
edges of regression of bony surfaces; and landmark "points" may
be true anatomical loci or intersections of shadows. Figure 7
shows a stereotyped tracing of the lateral cephalogram, with
indications of five landmarks used in the course of the examples.

Operational definitions of these points may be found in Riolo et
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al., 1974.

The data for these four examples are landmark locations from
cephalograms taken annually in the course of the University of
Michigan University School Study. The sample is of Ann Arbor
schoolchildren followed over various age ranges in the 1950's and

1960's.

Single latent variables

Example 1. Change in mean shape of a single triangle.
Figure 8a shows the arrow diagram for the analysis of group
differences in the shape of a single triangle. So simple a model
needs nothing beyond the most elementary methods for its
estimation. Application of the soft interpretation in this
context, however, will aid in the transition to the second-order
LVs which represent nonlinear deformations.

The data for this example represent the form of the triangle
Basion-Nasion-Menton in Figure 7. This triangle is often used by
orthodontists to summarize the so-called splanchnocranium, the
whole head below the brain. From the University School Study
archive we retrieved the coordinates of these three landmarks for
a subsample of 36 males with cephalograms at both age 8 (plus or
minus six months) and age 14.

The LV embodying the form of this triangle bears three
indicators: the perimeter of the triangle and the coordinates of
Menton in a system with Basion at (0,0) and Nasion at (1,0). The
scatter of these shape coordinates at the two ages is displayed

in Figure 8b. For all these analyses, age is coded by a single
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bit: 0 for the 8-year-olds, 1 for the l4-year-olds.
We estimate our "soft model" using the covariance matrix

between age and the indicators of the LV:

Age gp vy vy Size

Age gp .25
~-.00004 .00382

vy -.01633 -.00003 .00262

Size .03312 -.00073 -.00235 . 00597

The outer weights for the LV embodying the change of form
over time are estimated by mode-A regression of age upon the
indicators of its block. They are just the quotients of the
entries in the first column by .25: (-.0001, -.0653, .1325),
equal, of course, to the differences in means of the indicators
between the groups.

As indicated in Figure 8c, the proportion making the shape
LV manifest is essentially the aspect ratio of the triangle under
consideration, the ratio of its height (distance of Menton from
the Basion-Nasion baseline) to its base (the distance Basion-
Nasion). The dominance of this direction in facial growth has
been known to craniofacial biologists for some time (Bookstein,
1983). Because size information is present as a third indicator
for this first-order block, the net rates of growth observed in
the two principal directions may be computed separately and
indicated directly upon the diagram: .091 along the base, .175

along the "growth axis." The coefficient .132 of change in
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"size" (perimeter) is very nearly the average of these.

Example 2. Change in mean shape of a polygon. When there
are more than three landmarks under study, the first-order LVs
representing triangles one by one must be treated as indicators
of a second-order LV representing "the transformation as a
whole," the smooth deformation to which Thompson was referring.
In this example we continue to analyze a mean change of shape
over age, so as to ease the assimilation of the findings; but we
consider a mosaic of triangles instead of just one.

Figure 9a shows a polygon from mandibular plane to cranial
base, divided into two triangles Sella-Menton-Nasion, Sella-
Menton-Gonion (see Figure 7) along a convenient diagonal which
happens to be close to the growth direction unearthed in the
previous analysis. The arrow diagram for this model is as in
Figure 9b: the single exogenous variable Age is presumed to drive
a pattern of correlated shape changes throughout the form.

The covariance matrix relating the four shape indicators

(two per triangle) and age is:

Age gp Vl,Nas V2,Nas Vl,Gon ”2,Gon

Age gp .25

1 Nas -.00484 .00142

Y2 Nas -.01196 .00024 .00153

”1,Gon .00144 ,00005 =-.00022 .00061

Y3, Gon -.00524 -.00018 .00037 -.00004 .00078
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Again the outer weights are just the mean differences in shape
coordinate between the groups: (-.01936,-.04783) for the first
triangle, (.00573,-.02095) for the second.

The manifest shape measures corresponding to the LVs for the
triangles separately do not appear to be equal. The second-order
LV we have just estimated is therefore describing a nonlinear
shape change. We visualize it by abandoning the finite triangles
for the differential point of view (Bookstein, 1978). The
estimated second-order LV explicitly specifies a reconfiguration
of the landmark coordinates as drawn in Figure 9c. Reverting to
the spirit of D'Arcy Thompson, we treat these points as a sample
of the biological homology function throughout the interior, and
interpolate their correspondence by a smooth computation, Figure
9d.

At every point of this correspondence there will be a pair
of directions which, locally, serve the role of the axes of the
ellipse in Figure 4: they are the principal axes of the affine
derivative, directions of greatest and least local rate of change
of length. We may integrate the arms of these little crosses
into a new coordinate system, the biorthogonal grid, which is
everywhere parallel to one arm or the other in both forms, and
thereby lies at 90° in both. Corresponding intersections of
curves in the left and right grids are homologous according to
the interpolation in Figure 9d4. The pair of grids is thus an
orthogonal coordinate system customized for representing this
particular shape change.

The changes from left to right in the spacing between
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successive intersections of these grids represent a symmetric
tensor field distributing the landmark shifts throughout the
interior of the form. They depict the affine derivative of the
map in Figure 9c, estimated as a weighted average of the affine
derivatives 0(8 )Do(§) representing the shifts at each boundary
landmark with respect to its two neighbors. The LV in Figure 9c
is equivalent to the construction at every interior point of its
own pair of indicators, the weighted averages of the four
indicator pairs describing each corner separately.?

The depiction in terms of a tensor field, Figure 9e, is much
more convenient. The biorthogonal grid indicates the principal
features of the shape change independent of the original
triangulation: that is, it draws out the second-order LV without
further reference to the first-order indicators. The dilatations
indicated on the drawing are all relative to growth along the
baseline Sella-Menton. We see that the overall shape change is
highly directional in the maxilla, but less so in the lower face,
and that the horizontal rate of growth is graded from top to

bottom,
Several latent variables

Example 3. Forecasting the shape of a single triangle.
Consider again the triangle Basion-Nasion-Menton of Example 1.
The mean change of shape (Figure 8) is statistically significant

(Bookstein, 1984a), but does not appear to explain much of the

'This set of eight indicators is of rank four. See
Bookstein, 1984b.
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data. The "pin plot" connecting corresponding shape coordinate
pairs from the first age to the second indicates a considerable
stability of relative position in this scatter. It is useful to
know, then, exactly how the shape at the earlier age might abet
prediction of the shape at the later. The soft model which
allows an answer to this question is diagrammed in Figure 10.

The correlations among its indicators are as follows:

Vl,old Y2,01d Slzeold Vl,yng ”2,yng Slzeyng

pl,old 1.0

Y5, 01d .0564 1.0

Slzeold -.3175 -.1471 1.0

pl,yng .8592 .0266 -.3643 1.0
¥2,yng .1305 .6443 -.0884 -.0532 1.0
Sizeyng -.2909 .1350 .7891 -.2794 -.0309 1.0

Estimation of this model using only the two sets of two
shape indicators results in the LVs shown, with weights
(.96118,.27593) at the later age, (.96074,.27744) at the earlier.
The correlation between these two LVs is 0.889.2 (The second
dimension of this data set yields a correlation much lower, some
.62.) For males, one direction of shape variation is distinctly

most reliable, the direction approximately perpendicular to the

*As the correlations between the shape coordinates of a
single block are mild, these weights do not differ materially
from the canonical coefficients estimating the same model by Mode
B.
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growth axis. Approximately perpendicular to this gradient is the
gradient direction of greatest shape unreliability; here it is
aligned closely with the vector from Basion to Menton.

Additional information about size makes the optimal forecasting
of shape insignificantly more accurate, although size bears its

own strong autocorrelation.

Example 4. Forecasting a more complex configuration. As
Example 2 generalized the analysis of Example 1, so we can
replace the first-order LVs of the preceding model by second-
order LVs assembling diverse triangles. 1In this example, we use
the same pair of triangles that was used in Example 2, and
attempt to forecast between the ages as in Example 3. The model
we are estimating is shown in Figure 1la with all the triangles
filled in.

At convergence (Bookstein, 1982b), each LV is the sum of two
partial predictors, each involving the indicators of one triangle
with a net weight proportional to the strength of that partial
prediction. Each partial predictor is the weighted sum of the
two indicators for that triangle, with weights proportional to
their correlations with the partial predictor. Thus both the
combination of indicators into first-order LVs and the
combination of the two first-order LVs into each second-order LV
proceed without regard for sample correlations: Both pairs are
treated as conceptually orthogonal. Estimation of this same
relationship by canonical correlations analysis—that is, by a
single pair of first-order LVs tapping all four indicators

equivalently—results in a correlation of .936 but weight
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relations which have much less geometrical meaning.

The first-order LVs are approximately parallel between the
ages, as shown in the diagram; the weights for the second-order
LVs are nearly equal, indicating that predictability is fairly
homogeneously distributed over the face. The correlation between
the two second-order LVs is .9084.°® Drawn out in Figure 11D,
the second-order LVs appear to have a geometry of fair
complexity.

The interpolation which distributes this LV throughout the
interior of the landmark polygon is as in Figure 1llc, and is
summarized by the biorthogonal grid pair in Figure 114. (Do not
be perplexed by the six-sided singularity at the center; it
surrounds an isotropic point at which the rate of growth is the
sgme in all directions, and always appears when two adjacent
sides of a gquadrilateral increase in length faster than the
diagonals [Bookstein, 1984b].) The distance having the highest
covariance with this LV is the distance Sella-Gonion; that having
the lowest covariance is the segment Nasion-Menton. The shape
measure most sensitive to this change, and thus most stable over
normal male growth from age 8 to age 14, is not a ratio of
perpendicular distances, as in the previous examples, but the
ratio of nearly parallel distances Nasion-Sella:Gonion-Menton.
The orthodontist knows this as the ratio of anterior to posterior
facial height or, in another geometric guise, the mandibular

plane angle between the segment Sella-Nasion and the segment

*hnalysis of the triangles separately, each treated as in
Example 2, results in slightly lower correlations: .8966 for the
triangle on Nasion, .9041 for that on Gonion.
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Gonion-Menton.

These analytic strategies may all be generalized from data
in two dimensions to data in three. The first-order LV
representing the shape change of a tetrahedron is now a
combination of five indicators, each one the result of
premultiplying the true transformation matrix DO (now three-by-
three) by an essentially arbitrary vector. Two of these
indicators are those we have already been using: the components
of the two-dimensional LV for shape change of one face of the
tetrahedron. These are augmented by three additional indicators
specifying the movement of the tetrahedron's fourth vertex when
all three vertices of the face opposite are fixed in position.
The visualization of such a LV is carried out by the
generalization to three dimensions of the algorithms underlying
Figures 9c-e or Figures 11b-d: conversion of outer weights to
landmark shifts, interpolation of a continuous mapping consistent
with those shifts and linear between landmarks, and
interpretation of that mapping by its principal directions of

greatest and least ratios of change in length.

IV, Toward a Calculus of Indicators

To further elaborate the role of soft modeling in
morphometrics would render this essay arcane. Instead, in these
closing paragraphs I wish to recapitulate one particular theme
that speaks to a wider arena than the merely biometric: the role
of soft modeling in generating schemes of new measurements.

The relation between indicators and latent variables is not
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a one-way passage. Through the patterns unearthed by covariance
modeling and the interpretation of those patterns, soft modeling
deals not only with the covariances of the indicators observed
but also with the covariances of other indicators, indicators
which might have been measured. One returns from a soft model
with notions about better measurement, if not for this data set,
then for the next.

In morphometric modeling there is an infinitude of
indicators, the size and shape measures, but one does not need
them all. The crucial link between latent variables and
indicators is the biorthogonal grid of principal strains at 90°.
Representation of the LV by its grid, as in Figures 9 or 11,
closes the loop of soft modeling by directing our attention to
explicit new indicators which best adumbrate the LV out of all
the indicators which could be assayed. The LV is a filter, in
other words, which purifies our measurement scheme. In
biometrics, the indicators specified in this way—latent
variables made manifest—very often correspond to informal
clinical knowledge hitherto untestable, and always seem to
suggest new hypotheses and explanations.

Now, by virtue of the finite dimension of its subject-~
matter, morphometrics is atypically rich in symmetries and
analytic elegances. In other disciplines there are partial
substitutes for the powerful analytic geometry of the plane that
I have been wielding here: the endless idiosyncrasies of
individual social indicators, the semantics of attitude probes,

the biases of economic series, and so forth. When a LV bears a
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contrast between contributions with the same presumptive sense of
regression (that is, when the modeling reverses the sign of a
simple Pearsonian r), the investigator ought to imagine new
variables that directly capture the discrepancies. This is an
extension of the role played in biometrics by the preponderance
of shape variables. Shape ratios, as explicit contrasts, tend to
have far lower confounding correlations than size variables.

Size need not appear more than once in an analysis once we have
discovered that it is there; likewise, the general factor of a
block of indicators, once discovered, needs to be augmented by
the patterned contrasts contributing additional predictive power
to the model. One must thereupon return to the real world in
order to systematically oversample the indicators contributing to

these contrasts.

In either context, biometrics or the social sciences, the
closure of the soft modeling loop is a passage from the
covariances of the indicators back to their meaning and their own
limitations. That reversal of emphasis serves as a renewal,
augmenting the information available to the modeler. As such a
cycle proceeds, the latent variables will be developed like
latent images on a photographic plate: made steadily more
manifest, steadily more explanatory. The lesson of biometrics

for soft modeling is that one is never finished with measuring.
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Captions for Figures

Figure 1. Cartesian transformation from Diodon to Mola, after
Thompson (1961).

Figure 2. One set of shape coordinates of triangle AABC: the
coordinates of point C in a Cartesian system with A at
(0,0) and B at (1,0).

Figure 3. The geometry of shape variables in small regions of
the shape coordinate plot. (a) Example: isopleths of the
shape variable /ACB are circles through A and B.
(b) Approximating a shape variable by a Cartesian
coordinate. The variable is represented by G, the
direction of its gradient. (c) All shape variables with
the same gradient near a mean form are statistically
equivalent. Dashed lines, isopleths of the angle /AQC;
solid curves, isopleths of distance to the midpoint of AB.
These variables are statistically equivalent only near the
one point indicated.

Figure 4. Homogeneous deformation as a symmetric tensor.
(a) The uniform shear of triangles suggested by two sets of
three landmarks. (b) Rates of change of length in various
directions may be represented by the radii of the ellipse
into which a circle is deformed. (c) The principal axes of
deformation are the principal diameters of this ellipse,
and the principal strains are proportional to their
lengths. The corresponding diameters of the circle are
perpendicular as well. (d) Because the principal axes have

only direction, not location, they may be indicated by
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using transects through vertices each dividing the edge
opposite in a computed ratio. Distances specified in this
way are homologous from form to form according to the
uniform deformation in (a) above. The ratio between them
is the observable proportion most sensitive to this
particular shape change.

Figure 5. Constructing the proportion optimally describing a
mean difference of position on the shape coordinate plot.
The example drawn corresponds to the gradient G at point C
of Figure 3c. (a) From the vector between centroids to the
principal cross. (b) From the principal cross to a simple
proportion of finite measures. The same result would be
obtained by applying the construction of the previous
Figure to the deformation from AABC to AAB(C+Av).

Figure 6. Scatterplots for shape and shape change. (a) 2
population of shapes may be represented by the scatter of
locations of the third vertex after a registration (to
various scales) upon the other two vertices. (b) The "pin
plot." A population of shape changes may be represented by
vectors connecting the two registered locations of that
third vertex. The directions of the vectors may be coded
by a symbol (the "pinhead") at one end.

Figure 7. Conventional tracing of a lateral cephalogram, showing
the structures and landmarks used in the examples. After
Riolo et al. (1974).

Figure 8. Change in mean shape of a sincle triangle. (a) Arrow

diagram with one triangle. The indicators of the LV here,
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representing the mean shape change, are the two Cartesian
coordinates of the landmark Menton in a coordinate system
fixing Basion at (0,0) and Nasion at (1,0). (b) The
complete data set: location of Menton in a Basion-Nasion
coordinate system, for 36 males at ages 8 (heads of pins)
and 14 (tails of pins). The solid vector connects the age-
specific centroids; it is the LV we seek. (c) Arrow
diagram after estimation Mode A. The vector of mean shape
change given by the outer weights has been interpreted as a
cross of perpendicular distances across the triangle
according to the construction of Figure 5. Size change is
restored to the mean ratios of change in distance along
these directions.

Figure 9. Change in mean shape of a polygon. (a) a
quadrilateral and one triangulation. (b) Arrow diagram for
the second-order LV that is the mean shape change, with
first-order LVs (the'separate triangles), after estimation.
Size change is restored to distances in the principal
directions as in the previous example. (c) Reconfiguration
specified by the outer weights (here, actual mean shifts).
The baseline Sella-Menton is fixed by construction; the
tensor analysis is independent of this choice of baseline.
(d) The second-order LV, a smooth deformation corresponding
to this reconfiguration, here drawn as a Cartesian
transformation (cf. Figure 1). (e) Biorthogonal grids for
this deformation: the coordinate system whose axes

intersect at 90° both before and after the deformation.
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The decimal numbers are selected rates of growth as the
Cartesian transformation imputes them to its principal
directions everywhere in the interior.

Figure 10. Forecasting the shape of a single triangle. Arrow
diagram, after estimation, for one triangle at two ages.
Note the stability of the estimated weights over six years.

Figure 1ll. Forecasting the shape of a quadrilateral. (a) Arrow
diagram with triangles, after estimation, for the relation
of two second-order LVs representing the shape of the
quadrilateral at the two ages. (b) Reconfiguration (to the
baseline Sella-Menton) specified by the outer weights for a
small multiple of the indicated latent dimension.
(c) Cartesian deformation representing the second-order LV
Iby the relation of the two configurations in the previous
frame. (d) Biorthogonal grid pair for the deformation of
frame (c), with selected ratios. The most stable measure
of shape is not a ratio of perpendiculars but a ratio of

approximate parallels, Sella-Gonion:Nasion-Menton.
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