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Introduction

More than twenty-five years have elapsed since the writing of a
number of papers by E. T. Jaynes [23],[24] in which the role played
by the entropy in both equilibrium and nonequilibrium states of
macroscopic systems was clearly brought into the field of
thermophysics. And yet, the nmessage seems to have passed by
unnoticed by most of the workers in this field. This paper is a
modest attempt to revive the ideas set forth by Jaynes in a slightly
different context, stressing the utilization of entropy in
nonequilibrium phenomena. The main point which lies in the heart of
this subject is related to the simple notion that entropy is strictly
related to a set of experiments that one may perform on a given
macroscopic system and it may only be defined provided one clearly
specifies which are the thermodynamic parameters defining the state
of the system. This very simple requirement is almost always
completely forgotten, especially when dealing with systems whose
states are not in equilibriunm.

In the phenomenological attempts which have been made to cope
with the study of nonequilibrium phenomena, such as Linear
Irreversible Thermodynamics (LIT), the concept of entropy enters into
the theoretical framework only in a purely formal vay. It serves
merely to provide the formalism with a mathematical expression for
what Clausius, over one hundred years ago, called the uncompensated
heat which appears in any irreversible process. Now under the
concept of "entropy production” which allows one to identify which

are the effects produced in the system by the causes (forces)



originating them. But the entropy per se is never sought as a
computable variable in the formalism nor is any attempt made to
relate it with some well defined set of experiments. Of course, when
the entropy production is zero, that means that Clausius’
uncompensated heat is not present, the equation containing it reduces
to the well known Clausius expression for the second law of
thermostatics.

As we move into the more microscopic theories of nonequilibrium
phenomena, the above picture does not improve very much. The most
well established model for studying time dependent macroscopic
processes 1s that of the dilute monoatomic gas formulated by L.
Boltzmann 115 years ago [2],[3],[6]1,[19],[20]. 1In this model the
molecules of the gas conceived roughly as billiard balls are allowed
only to collide pairwise as a consequence of the diluteness and
characterized by a scattering cross section which can be computed
using the laws of classical mechanics. The bulk motion of the
molecules of the gas is described by a time irreversible
integrodifferential equation which is closed and nonlinear in f, the
single particle distribution function. In terms of this quantity, a
time dependent function, the famous H function is defined as the
average value of the logarithm of f, with weight f. It nay then be
shown that the time derivative of H ig a nonincreasing monotonic
function of time and furthermore it is such that for the equilibrium
state of the gas, characterized by a Maxwellian distribution function
for the velocities, the negative of its value multiplied by

Boltzmann’'s constant is identical with the expression that one gets
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for the equilibrium value of the entropy of a monoatomic ideal gas.
This immediately suggests the identification of (-H) with the
nonequilibrium entropy of the gas. Yet, this is completely
unjustified. First, as Jaynes has shown [24] the equilibrium value
of H is only at grips with the conventional definition of the entropy
for an ideal gas. Secondly to actually compute H one needs the full
solution to the kinetic equation obeyed by f. This task has never
been accomplished for any realistic model. Thirdly, the set of
experiments that is required to measure such nonequilibrium functions
is also lacking. Since this picture is applicable to all the so far
studied approaches to nonequilibrium phenomena under the heading of
"master equations", we may conclude at once that for these so called
‘mesoscopic or coarse-grained" equations used to study the approach
to equilibrium of many body systems, the concept of entropy is not
well defined for the nonequilibrium states of such systems.

The most fundamental approach that one could conceive to study
the problem posed above would be through other equations which govern
the motion of the molecules, atoms, or whatever microscopic particles
comprise the system. Since these equations are well known to be time
reversible; namely, invariant under the operation t - -t, any H-like
function constructed from quantities involving the full microscopic
dynamics of the system will clearly not serve the purpose of defining
an entropy-like function which, as discussed in the previous
paragraph, must be in some sense a nondecreasing monotonic function
of time. Once more as Jaynes has shown, the form proposed by Gibbs

to perform this role is the most convenient one for any arbitrary
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system in an equilibrium state since it is compatible with the
ordinary definition of equilibrium entropy and it is also the best
candidate to define entropy for nonequilibrium states, yet its
computation and relationship with a well defined set of experiments
ils still a program and not a fact.

After this lengthy discussion, it is easy to appreciate that
very often we meet statements about entropy which are hard to
understand. To speak about this function in systems which are far
away from equilibrium states, or to say that entropy is the supreme
law of nature, that it plays an important role in the evolution
towards complexity, and so on, without ever stopping to define it in
terms of the set of variable specifying the state of the system we
are dealing with is meaningless.

As we mentioned before, the purpose of this paper is to give an
account of the physical basis supporting the ideas contained in the
previous paragraphs. For this purpose, it is divided in four
sections. The first one is devoted to a brief review of the concept
of entropy as used in equilibrium thermophysics. The second one
bears directly on the question of using the Boltzmann entropy and the
famous H-theorem as the kinetic theoretical justification for the
equilibrium entropy and the second law of thermodynamics. In this
respect we insist on the different content of the two statements and
clearly indicate the up to present limitations on the use of the
concept of entropy beyond the local equilibrium state. We also show
explicitly that beyond this state the concept of entropy has no

significance. In section III we discuss other equally unsuccessful
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attempts to extend the concept of entropy to nonequilibrium states
using the basic laws of classical statistical mechanics and finally,
the last section contains some remarks on the misuse and abuse of the
concept of entropy.
I. Entropy in Equilibrium Systems

In order to set a framework for the discussion on the concept of
entropy, we shall briefly summarize in this section the significance
of this variable as it is ordinarily presented in the context of
thermostatics and equilibrium statistical mechanics. We recall that
for any closed (no mass exchange with its surroundings) arbitrary
system which undergoes a reversible process between two equilibrium
states A and B, where these letters stand for the set of pertinent
thermodynamic variables required to specify such states, the
difference in their entropy is given by [4],[30],[33],[45]

B
dQrev

S(B) - S(A) = AS =f T (1)
A

where T is the temperature at which the system exchanges the amount

of heat dQrev with its surroundings. Regardless of the way we choose
to introduce eq. (1) into the theory, it surely provides us with a
well defined way of computing AS; namely, by measuring dQrev or by
using the well known differential forms for this quantity arising
from the first law of thermostatistics. When the process between A
and B 1s not a reversible one, then eq. (1) becomes, according to
Clausius’' theorem, an inequality, AS being always greater than the
integral in the right hand side where dQ now refers to the arbitrary,
in general, irreversible process. If further such process occurs in
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an isolated system, then we get the well known inequality [30],[36],
[45]
AS>0 (2)

It i1s also imperative to recall that eqs. (1) and (2) are valid in
systems for which the acceleration due to the force of gravity is
negligible or taken to be equal to zero. For systems which are
closed but may exchange energy with their surroundings, eq. (2) still
holds true for the thermodynamic universe, uniquely understood to be
composed by the system plus its environment (surroundings).

For open systems which are usually conceived as the
thermodynamic phases composing a single heterogeneous system, the
bhases being able to exchange matter through their boundaries, eq.
(2) holds true for the whole system provided we introduce the
additional assumption stating that the entropy, and in fact, all the
exterior thermodynamic properties, are additive. Using this
assumption it is then a standard task to prove that the basic
differential form for classical thermostatics, namely Gibb's
relation, take the form

I
TdS = dU + pdV + other forms of work - £  pjdNi (3)
i=1

where Nj is the number of units of species i in a given phase, uj is
the chemical potential of species i, and the rest of the symbols are
the standard ones. These equations summarize the basic results from
which AS may be computed for any two equilibrium states of a given
arbitrary system.

The microscopic interpretation of these results is well

accounted for through the Gibbs-Einstein formulation of equilibrium
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Statistical mechanios [331,[11,[18]. Recalling that the
microcanonical ensemble is the one suitable to represent an isolated
system whose thermodynamic states are necessarily described through
extensive variables; namely, its energy, its volume and perhaps an
extra set of extensive parameters, then if we denote in classical
Statistical mechanics Q(E,V,{Yi}) the region in phase space
corresponding to that determined by a given set of numerical values
of such macroscopic, measurable variables, the entropy of the system
as a function of E, V and {Yi} is given by the well known formula,
(331,[18],[21],[38]

S(E,v,{¥i}) = kx 2n Q (E,V,{Yi}) (4)
where k may be shown to be the Boltzmann constant k =5Q/No where J?is
the universal gas constant and N, is Avogadros’ number. Eq. (4) is
the basic equation of equilibrium statistical mechanics. Given a
Hamiltonian function describing the microscopic properties of the
system, Q may be in principle computed and after identifying E with
the internal energy of the system, one gets an explicit form for the
thermodynamic potential S in the energy representation. Thereafter,
all the thermodynamic properties of the system may be obtained
through simple straight forward algebraic operations. If the system
is not isolated but in thermal contact with its surroundings, one may
easily show that the appropriate representative ensemble is Gibbs'
canonical ensemble for which the corresponding thermodynamic
potential is Helmholtz's free energy F which is now a function of T,V
and {Yi}. The calculation of F is now easily performed by computing

the partition function in the standard way. It should be emnphasized
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here that provided that the fluctuations in the energy arising from
the interaction between the system and its bath (surroundings) are
normal, that is to say that the root mean square derivation is of the
order of (VN)~1 where N is the number of particles in the system (N -
10%3) eq. (4) remains essentially valid (although its mathematical
structure might change a little). The same comments apply to the
case of an open isothermal system exchanging both matter and energy
through its boundaries with its surroundings. The appropriate
representative ensemble is the grand canonical ensemble, (-pV) turns
out to be the corresponding thermodynamic potential and eq. (4)
remains a valid expression for the entropy provided the fluctuations
in the energy and in each of the number of species are normal.

In essence, what classical (and quantum) statistical mechanics
teaches us is that as long as we are not dealing with small systeps
(N<<1023), with the behavior of systems near critical points ang:z
few other situations in which fluctuations of the extensive varlables
E, V, N, etc. are not normal, eg. (4) provides us with the link
between the microscopic and the macroscopic nature of our systen.
Or, rephrasing this statement, for sufficiently swmall fluctuations
characteristic of thermostatic equilibrium, all the various
representative ensembles are equivalent. Since the macroscopic
entropy defined in eq. (1) may be computed from calorimetric
measurements, we may refer to it as the calorimetric entropy. On the
other hand, the entropy computed from eq. (4) requires the knowledge
0of molecular parameters usually provided by spectroscopic

measurements so we may refer to it as the spectroscopic entropy.
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Agreement in the values thus obtained for these two quantities is
thus considered as a satisfactory proof of the relationship between
the macroscopic and the microscopic description of a given system in
a state of equilibrium. (11),[34]

Such an agreement, however, does not always occur. There are
many systems for which at a given temperature (usually the boiling
point) the spectroscopic entropy is smaller than the calorimetric
value. This discrepancy is closely connected with the Nernot
principle which entails us with a prescription to compute the values
of S as the temperature is lowered toward the absolute zero. [43],
[11] The excess entropy manifested in these cases i1s then
interpreted as a measure of the residual entropy that the systenm
Possesses due to some internal degrees of freedom which, in the
process of cooling, never reached their true equilibrium state.
Thus, 1t 1s also referred to as the "degree of disorder" that the
system exhibits compared to the case of a perfect crystal for which
at absolute zero, the entropy is equal to zero. Space forbids a more
profound discussion of this rather still controversial point about
using this criterium to endow S with the property of measuring the
"degree of disorder" in a macroscopic system. [11],[33],[34],[43]

The final point to be stressed in this introduction is that eqgs.
(1) and (4) are operative expressions which allow us to compute AS in
the macroscopic world and in the microscopic world, respectively, for
a given well defined set of measurable parameters. Entropy is thus a

well defined property for any closed or open thermostatic system



vhich is in a state of equilibrium, regardless of what interpretation
we want to adopt for it. [23],[24],[38]
II. Entropy in Nonequilibrium Systems

In the previous section we have simply reminded the reader of
the indisputable fact that entropy, regardless of the physical
interpretation we wish to attach to it, is a well defined computable
property for any system in thermodynamic equilibrium. This section is
devoted to the discussion of whether or not, and how in the
affirmative case, one can define and compute entropy in a system
which is not in a state of equilibrium. Since Higatsburger [22] in
an accompanying article in this volume has undertaken the task of
following the historical development of the concept of entropy, we
shall follow here a rather logical order discussing first the
macroscopic approach to the question and afterwards touching on some
of the efforts made to cope with it on more microscopic bases.

The first and perhaps the only well structured approach to
extend the framework of thermostatics to nonequilibrium systems is
based on the ideas of Onsager, Casimir, de Donder and others
(7),(8),(26),(29),[51,[7]1,[281,[31] which date back no more than six
decades or so. The ensuing formalism, now referred to as ILinear
Irreversible Thermodynamics (LIT) is based on four assumptions which
are outlined in what follows. They are:

(a) The local equilibrium assumption which states that for
any system whose properties are space and time dependent, around each
point in space and at any given time we may conceive a local state of

equilibrium. This state 1s specified by assuming that the entropy

10



density S(¥,t), or any other variable as well, may be defined by
regarding it as having the same functional dependence with the
relevant independent variables, as it has in thermodynamic
equilibrium. For a fluid for instance, if we take the mass density
p(?,t) and the internal energy density e(#,t) as two independent
local variables, then S(®,t) has the same functional dependence with p
and e as the equilibrium entropy has with the internal energy and the
mass of the system. Notice should be taken that although the
functional relationship is claimed to be the same, this is not so for
the numerical values of the local quantities. 1In short, what we are
stating in this example is that the local entropy is a functional of
? and t through e and p only. As an example of this statement,
consider the case of an ideal gas. The relationship between its
state variable at any given point in space and any arbitrary time is
p(?,t) = p(2,t) T(®,t), where p, p and T are the local pressure,
density and temperature, respectively. This is the local equation of
state where the numerical values for each of the three local state
functions appearing therein are to be obtained from the solutions to
the Euler equations of hydrodynamics for an ideal fluid under
specified initial and boundary conditions.

(b) Due to the nature of assumption (a) one may compute
the total time derivative of S(®,t) in terms of the time derivatives
of the independent variables. In the case of p(®,t)
and e(¥,t) such derivatives are known through the conservation
eéquations. In turn, one can manipulate the results in such a way that

the time rate of change of S(®,t) is written as a balance equation
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characterized by a flow and a source term. This latter one nay alvays
be expressed as a sum of products, each product containing a flux or
current characterizing the nonequilibrium state (heat flux, etc.) and
the gradient of the intensive variable bproducing such a flux
(temperature gradient, etc.) which is identified as the conjugate
force. This source term known as the entropy production is assumed
to be non-negative. This assumption, the second one in the theory
process is the logical generalization of eq. (2) both for closed and
open systems. [7],[31]

Before we move to the content of the third postulate, its
rationale should be clearly understood. The main goal to be achieved
by any macroscopic theory of matter (and radiation as well) is to
establish a well defined set of differential equations for the
selected independent variables which may be solved with a minimum of
additional information to disclose all the properties of the system
under study. This 1s precisely the status of eq. (3) in
thermostatics. In LIT it turns out that the conservation equations
for the locally conserved densities when chosen as independent
variables, are outnumbered by the number of unknowns among which the
fluxes are included. Thus, additional information is required to
relate such unknowns to the state variables themselves. This is
accomplished through the introduction of the so-called constitutive
equations, and their structure forms the main body of the third
assumption. Hence,

(c) For any isotropic systems (this restriction is easily

removed) in which there are n fluxes of a given tensorial character
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assoclated with an equal number of forces of the same tensorial
character we assume that the coupling of any given flux, say Ji,
depends linearly on all the n forces. Shortly,

n

Jy = ELiJXJ i=1, .. .,n (5)
=1

Here, the coefficients Lij depend only on the equilibrium values of
thermodynamic quantities such as the density and the temperature.
The matrix L whose elements are Lij is known as the "transport
matrix". Fourier’'s equation, Fick's equation, Navier-Newton's
equation, etc., are typical examples of eq. (5).

(d) For many systems eq. (5) is not enough to provide the
necessary number of equations that may lead to a closed set of
equations for independent variables. The fourth assumption of the
theory makes sure that this is the case and states that L must be a
symmetric matrix; namely, Lijy = Lji for all i and j. This property
was actually derived by L. Onsager in 1931 from strictly microscopic
considerations, the invariance of the dynamical equations of motion
under time reversal (t - -t). [25],[44],[33]

Vhen assumptions (c¢) and (d) are combined with the local
equilibrium assumption (a) together with the conservation equations,
one 1s led to a complete set of nonlinear differential equations for
the local state variables which may be solved in principle for given
initial and boundary conditions provided the coefficients Lij are
known, either from experiment or from microscopic models. Emphasis
has to be placed here on the role played by the conceptualization of
the entropy in the theory. Except for the fact that throughout the

entropy balance equation, in particular the entropy source term, one
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gets to perceive the relationship between fluxes and forces and
further because the non-negativeness of this term connects us with
equilibrium thermostatics, the calculation of S(®,t) as such is
entirely secondary and, in fact, assumption (b) is not needed to
accomplish the goal of the theory. In short, we have no prescription
to compute S(#,t) and even the less to compare it with experiment.
Thus, the very tangible concept of entropy in thermostatics falls
here behind a mask through which we may sense lts general features
but it is not accessible to us in its full meaning. This does not
imply that LIT is not a useful or successful theory, which indeed it
is, [27] it only indicates that the extrapolation of the concept of
entropy as used in thermostatics loses, if not all, certainly a great
deal of its objectivity.

One might turn his head around seeking enlightenment to this
question through a more microscopic theory. Yet, contrary to the
case of thermostatics, this effort becomes rather frustrating. 1In
fact, up to date and especially along the issue of clarifying the
concept of entropy for nonequilibrium states, the only more
microscopic interpretation we have on LIT is through the kinetic
theoretical model for a dilute gas proposed by Boltzmann over 100
years ago. (2),(3) This model generates the time evolution equation
for the single particle distribution function of a monoatomic gas
known as the Boltzmann equation. This is not the Place to enter into
& full discussion about the origin and nature of this equation
[21,0(681,020],0331,[39]. Let us just remind the reader that in the six

dimensional space in which the molecules, pictured as point masses,
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are described through their position vectors Pi and velocities i (1
=1,...,N; N ~ 10%3%) we may define a function f£(®,¥,t) such that if
it 1s multiplied by a six dimensional volume element df d¥, the
product is a measure of the number of molecules which at time t are
found to lie in 47 d¥. The Boltzmann equation (BE) simply states
that the flow of particles through the boundaries of any such volume
element has to be compensated by the number of particles which enter
or leave the element on account of binary molecular collisions. In

symbols, in the absence of external forces,

daf _ of of df)
<E)drift Soet 7 v (8_?) =<H collisions )

With a master stroke of genius, Boltzmann proposed an explicit
form for the right hand side of eq. (8) converting it into an
intergrodifferential nonlinear equation in f. Such an equation mnay
in principle be solved for f(2,?,t) for given initial conditions
£f(?,¥,0) and suitable boundary conditions in the six dimensional
(#,9) space. The most important question about the (BE) is if for
arbitrary f£(®,%,0) the gas will reach in time its equilibrium state.
The answer to this question represents a formidable task which would
require knowing in complete detail the existence conditions and
properties of the solutions [19] to a class of nonlinear integro-
differential equations, for almost arbitrary initial conditions.
This program is unavailable to us even today. Here again Boltzmann
gave way to his genius and found an answer to this question without

having to solve the equation itself.
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Let us assume that the solution to the BE exists for a large
(unrealistic) class of initial conditions f£(2,%,0). Furthermore, let
us assume that all integrals of £(%,9,t) in (2,9) space converge.

Then if we define a quantity

H=ffdi‘d?f2,nf (7)
it may be shown that [2]1,[3],[7],[39],
dH
it L0 (8)

the function H is a monotonic nonincreasing function of time. This
is the content of the celebrated H-theorem which is at the heart of
all discussions about the nonequilibrium interpretations of entropy
as we shall further see. Once the property defined by eq. (8) is
established, one can also prove that the thermodynamic equilibrium
state 1s always reached given that the external forces acting on the
gas satisfy some specific conditions. In the absence of an external
force, the equilibrium state is uniquely described, as it is well
known from elementary kinetic theory [33] by the well known Maxwell-

Boltzmann distribution function; namely,

3/2 2
m nv
f(eq)(n,T) =n (21rkT) exp(— ﬁ) (9)

where n =h?©'is the number density, T the equilibrium temperature, m
the mass of the molecules and k, Boltzmann's constant.

The remarkable feature about this theorem pertinent to the
subject of this paper is that when eq. (9) is substituted into eq.
(7), one finds after a very elementary calculation that HEd = -k-1

s(1d)(n,T) where §(1d)(n,T) is the equilibrium entropy for a
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monoatomic ideal gas as derivable from eqs. (2) and (4). This
immediately suggests the identification

S=-kH (10)
as the general definition of entropy including nonequilibrium states.
Furthernmore, eq. (8) then implies that(%%iz_o, the entropy can never
be a nondecreasing function of time and Joyfully we may thus claim
that we have a kinetic theoretical proof of the second law of
thermodynamics. A word of caution is nevertheless pertinent at this
stage because the contents of egs. (2) and (10) are virtually
different. Eq. (2) states that the change in entropy for any
isolated system in a process occurring between two equilibrium states
can never decrease. On the other hand, eqgs. (8) and (10) state that
for a dilute monoatomic gas which at some time t=0 is characterized
by some unspecified value of the distribution function £(2,%,0)
associated to a nonequilibrium state, the gas evolves towards its
equilibrium state in such a way that for all times, S defined as such
is always a nondecreasing function of time. Once the equilibrium
state 1s reached, then S€9 has precisely the same mathematical form
as that predicted by the equilibrium theories. Therefore, the
attempt of identifying the H function with the entropy of a dilute
monoatomic gas is valid only for the equilibrium state [23],[24].

The above discussion poses an immediate question; namely, can we
really compute the values of H (or S8) for any arbitrary
nonequilibrium state of the gas? This bluntly posed question
requires an equally drastic reply; namely, to perform such a

calculation, we must solve the BE. But this has never been achieved
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in general except for a system of homogeneous rigid spheres and a few
other models of little physical significance, if any. For the dilute
monoatomic gas there are two well defined methods of solution which
we shall discuss with certain detail because they bear heavily on the
above question. The first of these methods can be understood under
the following basis. [7],[39] Let us recall that our system is a
fluid which from the standpoint of hydrodynamics may be described
through the values of five local variables which we choose to be the
locally conserved densities, mass p(®,t), momentum p(?,t)4(?,t) and
energy e(Z,t), where W(¥,t) is the hydrodynamic velocity of a fluid
element at ¥*. From the manifold of possible solutions to the BE we
vant to choose those which are consistent with the hydrodynamic
description. They are the so-called "normal solutions”. [(19] Notice
here that whereas the full information contained in £(®,9,t) is
needed to understand the time evolution of the gas in (,9¥) space
only five local quantities are needed to understand its hydrodynanic
status. This means that in some, not yet specified way, we must
perform a contraction in the information required to go from the full
kinetic to the more structured hydrodynamical language. The method
used to sort out the normal solutions of the BE was originally
devised by Hilbert [61,[19] and adapted specifically to the BE by
Chapman [6] and independently by Enskog [3]. The now called Chapman-
Enskog method relies on two basic assumptions; narely

(a) For times long enough compared with the mean collision
time, we assume that the distribution function f(2,%,t) is governed

in its time behavior only through the hydrodynamic variables p(?,t),
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4(#,t) and T(R®,t), where the local temperature T(R®,t) is related to
the internal energy density e(®,t) through the relationship e(2,t) =
%.kT(?,t). Notice should be made of the fact that this assumption
which essentially states that the time evolution of the gas is
governed by the time evolution equations of the slow or conserved
densities is equivalent to the local equilibrium assumption of LIT
(see (a) p. 11))

(b) The single particle distribution function £(2,9,t)
under the restriction imposed by (a), may be expanded around a local
equilibrium state in power series of a uniformity parameter, say u,
which is a measure of the magnitude of the macroscopic gradients
bresent in the system. The local equilibrium state is one
characterized by a Maxwell-Boltzmann distribution function [ef. eq.
(9)] in which the equilibrium variables are replaced by their local
values (see Appendix B).

Without going into any of the mathematical details of the
procedure [6]1,[19],[20]1,[211,(39], we can now analyze the outcome of
using these assumptions in the BE emphasizing both the structure of
LIT and the role of entropy in nonequilibrium states. If the zeroth
order term in u is taken in the expansion referred to in (b); namely,
the local equilibrium state, it follows immediately, as shown in
Appendix B that the corresponding hydrodynamic equations are those of
a Euler (inviscid) fluid whose local hydrostatic pressure obeys
precisely the local equation of state for an ideal gas, p(®B,t) =
p(2,t) R T(R,t) (see assumption (a) p. 11. Furthermore, the entropy

of the gas computed from the local version of eq. (10) is identical
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in structure to that of an ideal gas and 1t is conserved along the
streamlines of the flow. In other words, to this order of
approximation, the flow of the gas is adiabatic. These results
simply confirm the fact stated in assumption (a) above; namely, that
the local equilibrium assumption has already been introduced into the
method.

To first order in the parameter u, as also indicated in Appendix
B, the set of hydrodynamic equations corresponds precisely to those
obtained from the general conservation equations for momentum and
energy when the linear relationship indicated in eq. (B8), explicitly
written as Fourier’s equation for heat conduction and Navier-Newton's
equation for the stress tensor are used. 1In this calculation one
obtains explicit forms for the heat conductivity and the shear
viscosity in terms of the solutions of well defined linear integral
equations which may be solved once the specific intermolecular
potential is chosen. Furthermore, the calculation of the entropy
according to egs. (7) and (10) turns out to be identical to the one
in the u = O approximation so that the local equilibrium assumption
is once more fulfilled. And even more, 1t may be shown that, by an
appropriate mathematical manipulation of the BE the entropy balance
equation referred to in assumption (b) p. 12 is obtained with a non—
negative expression for the entropy production. This equation, which
is a general property of the BE, can also be shown to hold true if
the solution for £(2,%,t) up to first order in 1 is used to evaluate
the various contributions involved in it [7]. Finally, when a

multicomponent mixture of inert dilute gases 1s considered under this
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first approximation in the parameter u, one can show that the Onsager
reciprocity relations Lij = Lji are also satisfied [7]1,[25]. In this
sense, one may therefore claim that the basic assumptions of LIT find
thelr kinetic justification as a consequence of solving the BE with
the Chapman-Enskog method provided that in this solution we keep only
those contributions which are at most of the first order in the
nacroscopic gradients.

This rather attractive panorama is completely disrupted when we
g0 one order further in u; namely, we include £(2) in the solution.
A set of hydrodynamic equations may still be obtained, the so-called
Burnett equations, for which eq. (5) is violently violated [7]. And
what 1s more disturbing is that the entropy of the system is no
longer at grips with the local equilibrium assumption since it now
becomes a function of the gradients themselves! Also, the Onsager
relations do not hold true, and the whole picture provided to us by
LIT breaks down completely. The reasons behind this catastrophe,
which grows worse as we go higher and higher in u, is a rather subtle
point, too technical to be discussed here. The interested reader is
referred to the original sources for further information [12-14].
Let us just state that beyond the terms in assumption (b), linear in
U, the Chapman-Enskog solution is no longer compatible with the
assumptions of LIT. And moreover, the function H (or § for the
matter being) looses its potentiality as omne capable of clarifying
the concept of entropy for a nonequilibrium state.

The above analysis clearly points out two of the still open

questions underlying the definition of S for nonequilibrium states.
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The first one is that in the case of the BE, the method of seeking
normal solutions is only compatible with the phenomenological theory,
LIT, only if gmall deviations from local equilibrium are considered.
This implies neglecting all terms of order u® (n>2) in the expansion
in parameter u. Not much insight is gained in clarifying the concept
of entropy since to this approximation the local equilibrium
assumption is Jjustified. The second question is that the above
analysis is valid only for a dilute gas. Since we lack kinetic
equations amenable to analytical treatment for other realistic
systems, we are unable to extrapolate the true significance of eqgs.
(8) and (10). Ve shall come back to this question later on in a
different context.

Before leaving kinetic theory, it is important to mention that
among other attempts to solve the BE, there is one devised by H. Grad
in 1949 which seeks general instead of normal solutions [19],[20].
The main gist of the method is to transform the full nonlinear
integrodifferential equation into an infinite set of coupled
nonlinear differential equations for an equal number of quantities
which depend on the position P and time t.[19],[20] These quantities
play the role of the local variables of the previous method and, in
fact, the first five moments of f£(®,¥,t) appear among them. If one
now arbitrarily truncates the set of equations and keeps say n>5
moments (Grad chose n = 13), one finds, for specific models of
molecular interactions, that the distribution function depends on
such n quantities. This means that besides p(2,t), @(®,t) and T(2,t)

on the remaining n-5, moments are raised to the status of independent
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state variables. Physically, this means that there are fluids
(unfortunately not ordinary gases) which, under certain conditions,
would require more than the five hydrodynamic densities to describe
thelr states. The resulting enlarged space of state variables thus
contains additional variables whose time evolution equations turn out
to be of the relaxation type equations. But the most important issue
of this method in the context of this paper is that although the
function H may be formally defined, it is a property associated to
the BE. The ordinary concept of entropy has absolutely no room in
the formalism and the whole question of defining this function for
nonequilibrium states beyond local equilibrium loses all its meaning.

These ideas, kinetically valid for dilute gases only, when used
on a phenomenological context to describe other arbltrary systems
beyond their local equilibrium states have given rise to Extended
Irreversible Thermodynamics [15],[16],[32]. This rather recent
approach to macroscopic nonequilibrium phenomena, with its present
scope and limitations, has proved to be very useful in systematizing
a number of results so far disconnected among each other. The
important feature of this theory, however, is that entropy or, as a
matter of fact, any thermodynamic potential is, so far, completely
foreign to the formalism. We thus reach a stage at which a
challenging equation ought to be raised: is entropy a concept
assocliated to a variable which may be defined in a clear and
unequivocal operative way beyond local equilibrium? To the author'’s

knowvledge, a reasonable answer does not yet exist [8],[9],[25].
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IITI. Qther Nonequilibrium Aspects of Entropy

As we have shown in the previous section, kinetic theory of
gases throws a tiny bit of light on clarifying the possibility of
extending the definition of entropy to nonequilibrium states. Yet,
one could object to this approach arguing that after all it is not
the most general way of formulating the problem. Instead, one should
really go to the basic postulates of statistical mechanics to search
for the appropriate answer. Moreover, since microscopic dynamics
belongs to the realm of quantum physics, one should then appeal to
quantum statistical mechanics. We shall dispense here with this last
requirement. First for pedagogical reasons, and second because the
basic ideas underlying the physical nature of the question are
essentially the same in both classical and quantum mechanics
(29],[351,[37].

Consider any system of N degrees of freedom, where N is very
large (N-1023). Think of an N dimensional space in which each point
characterizes completely any dynamical state of the system obtained
assigning a numerical value to each of the N independent coordinates.
Following Gibbs, to cope with all possible initial conditions
compatible with the few macroscopic constraints defining the system,
the only ones we can control in the laboratory, we introduce a
"representative ensemble" composed of an arbitrarily large number (an
infinite number in fact) of identical macroscopic replicas of our
system, so that the equally large (infinite) number of points in such
N-space is actually represented by a continuous distribution. Such a

space denoted by I' is known to us as the phase space for the systenm.
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Let p(T,t)dr be the number of representative points which at time t
are found to be in the N-dimensional volume element dAT. The laws of
classical mechanics then require that the motion of such points in
the course of time behave as an incompressible fluid. dI' may be
thought of as an amoeba which changes its shape as it moves so that
all points which are initially contained therein, remain within; and
no points from the outside can enter dI'. This is the physical
content of Liouville's theorem [18],[38],[39]. Now imagine a system
which at t = 0 is prepared in a nonequilibrium state described by a
distribution function p(T,t) which is zero everywhere in T space
except for a small region whose extension is determined by the number
of constraints imposed upon the system in such a state. The next
question that comes to mind is to inquire how p(T,t) will evolve in
time and, in particular, under which conditions if any 1t eventually
will reach the equilibrium distribution p€d(T). Thus, the question
is connected with the possibility of proving the analog of the H-
theorem of kinetic theory of gases but now for p(T,t) instead of
£(#,¥,t). Since p(r,t) contains now all the dynamical information
about the representative ensemble for our system, one is tempted to
define, in analogy with eq. (7), a quantity H of the form
(18],(35],[24].

H= ] p(T,t) &0 p(T,t) 4T (11)
' space

However, the inequality expressed by eq. (8) does not exist for
this function. This, however, should not surprise us. In fact,
p(T,t) obeys a time evolution equation equivalent in content to
Hamilton’s equation of motion for the N dynamical variables
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associated with the degrees of freedom. As it is well known from
classical mechanics, these equations are invariant under time
reversal (t - -t). ©No privileged direction in time is associated
with them so that the "irreversibility" property exhibited by eq. (8)
has no place here. Therefore, eg. (11) can hardly be identified with
the concept of a nonequilibrium entropy. On the other hand, it is a
well known fact [27] that if in this eq. (11) we substitute the
equilibrium value of p(T') for any of the standard representative
ensembles, we recover the equilibrium value of the entropy S€d =

- kH®d where S€d is precisely the same quantity defined in eq. (5).
Not much progress is thus achieved by resorting to the nicroscopic
equations of motion as a possible source for clarifying the concept
of entropy for nonequilibrium states [24].

The reason why the inequality expressed by eq. (8) could be
derived from the BE is essentially that this equation 1s already
irreversible in time. It is no longer invariant under time reversal.
One may thus wonder if by contracting information from the exact time
evolution equation for p(I',t) one could be led to a class of
irreversible equations for which the analog of eqs. (7) and (8) could
be derived. That this is indeed the case, was first shown by Pauli
in 1927 [38],[40],[44], when by an application of successive random
approximations he managed to obtain what is now referred to as a
"master equation". Since the underlying ideas are relatively simple
to explain, let us proceed to discuss them in the realm of classical

mechanics [38],[40].
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Imagine that the region in phase space TI' available to the
representative points of the systems belonging to the ensemble are
divided into cells whose extension is large enough to contain a very
large number of points but small compared with the region as a whole.
This is basically the coarse graining idea of Ehrenfest [81,[10].
Now imagine that the initial state of the system is such that it mnay
be represented by a uniform distribution of points in a single cell,
call it J. Thus p(l',0) = const if a point is in J and is zero
otherwise. After a time t has elapsed, long enough compared with a
microscopic time, the points in J will have spread out into the
neighboring cells so one can speak of the fraction of points in a
different cell, say J'. Thus we are led to raise the question of
what 1s the probability of finding a point in cell J’' at time t if at
initial time t = 0 it lay in J. After such time interval t has
elapsed, we look into all neighboring cells contalning points, smear
them all throughout the cell J,J', etc. and repeat the question about
finding points in other cells J'’ after a time 2t has elapsed, etc.
After this has been done a number of times, one finds that the
nigration of the representative points along the cells is of a
diffusive type which 1s governed by a differential equation
characteristic of a class of stochastic processes known as Markoff
processes [17],[40],[41]. This is the so-called master equation
[37]. Its mathematical structure is also easy to understand since it
reflects the fact that the time rate of change of the probability of
finding a point in a given cell at a given time is merely the result

of a gain-loss process. The main issue now is that one can define a
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quantity H identical in structure to the previous two, egs. (8) and
(11), as follows:

H = § PJ (t) &n PJ(t) : (12)

where Pg(t) is the probability of finding a system in cell J at time
t. From eq. (12) and the master equation governing the time rate of
change of Pg(t), it is easy to show ([411,[44] that this H function
satisfied the inequality given by eq. (8). Moreover, if the
equilibrium solution to the master equation PJ(eq) 1s substituted
into eq. (12), then one recovers once more the equilibrium value for
the entropy as expressed by eq. (10). Thus, we find ourselves in a
situation rather similar to that found in kinetic theory; namely,
only for equilibrium states H and S are related among themselves and
the inequality expressed by eq. (8) exists with a different
interpretation than eq. (2). Moreover, to compute H given in eq.
(18) for nonequilibrium states, one requires a full knowledge of
Pg(t) which is tantamount to solving the master equation, a task that
has been accomplished in some restricted cases [17],[41]. We then
reach the unhappy conclusion that eq. (12) is doubtfully identifiable
with a nonequilibrium entropy.
IvV. Concluding Remarks

Before closing this discussion about the possibility of
extending the concept of entropy beyond equilibrium states, some
remarks on the results presented in the previous sections are rather
pertinent.

Entropy is a well defined thermodynamical variable for systems

which are in their equilibrium states. These states, including long
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living metastable states, are uniquely defined both from their
microscopic and macroscopic points of view as well. This is
essentially why the Gibbs-Einstein algorithm is so successful. To
each equilibrium thermodynamic potential, the entropy included, one
may uniquely assoclate a microscopically based partition function in
which all the relevant information needed to specify such states is
contained. This point is clearly borne out in the two explicit
methods we discussed for solving the BE, in connection with the
calculation of the function H. As long as we stick to the Maxwell-
Boltzmann distribution function, eqg. (9) or its local version both
already containing the relevant variables required to describe the
corresponding equilibrium and local equilibrium states, respectively,
wve find that eq. (10) is satisfied. This means that the expression
for the entropy so obtained is identical to that predicted by the
equilibrium theories for a monoatomic gas. However, as we start
adding up additional contributions, either through higher
contributions in the gradients or via the Grad expansion,
contributions containing on the one hand terms of higher order in the
gradients, or terms containing additional moments, in both cases
representing additional dynamical information and such a relationship
ceases to exist. And why not! After all, nonequilibrium states are
not uniquely characterized, and we should not be able to expect that
their description is feasible in terms of well defined equilibrium-
like variables. This is precisely the ultimate nature of the so far

available calculations.
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The same situation occurs with the definitions of H proposed in
eqs. (11) and (12). They only hold true for equilibrium states. It
seems then inevitable to conclude that entropy as a well defined and
experimentally derivable quantity, regardless of its interpretation
in terms of order or disorder, a measure of the degree of constraint
of a macroscopic system, a thermodynamic potential, etc., is only
acceptable in systems which are in equilibrium. To extrapolate the
exlstence of this variable to nonequilibrium states beyond local
equilibrium (LIT), especially through its rather restricted
relationship with the function H in any of its versions, is entirely
devoid of physical reality. Ve are unable to compute the values of
this function from first principles, nor are we able to compare them
with experimental results.

In spite of these stringent restrictions on the use of entropy
as a physically measurable quantity, its interpretation in terms of
order or disorder has been in the author's opinion boldly
extrapolated in the field of nonequilibrium thermal physics as well
as in other areas not only of physics but other sciences. This is
the case of fields such as cosmology, sociology, economy, ecology,
etc., where statements about the variable entropy as playing often a
dominant role in describing the characteristics of some relevant
phenomena are, if not wrong, completely misleading. Particularly, in
the field of nonequilibrium phenomena a rather broad, imprecise
language has been introduced with the burpose of dealing with
"complex” systems which are in “far away from equilibrium” situations

and for which evolution towards complexity is dominated by entropy.
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And, of course, the now fashionable terms of order, chaos,
fluctuations and so on also come into the whole scheme making the
entire wording glamorous and even fantastic but certainly not
precise. One of the first vague concepts is the one associated with
far away from equilibrium. What should we understand for such a
regime? One which is beyond local equilibrium? Or, is it a local
equilibrium state with contributions arising from the gradients of
the local variables raised to any arbiltrary power? Or, is it a state
to which a system is driven by external fields? Once we can agree on
a definition, we should also agree on selecting the independent state
variables needed to describe that state. Assuming that this is
accomplished, we should then give a precise definition of entropy for
such a state since, as we have Just seen, this variable is
meaningless beyond a local equilibrium state. Therefore, for other
states, any statements we issue about entropy as a variable
associated with their behavior are entirely meaningless. There is no
such thing as a universal law of entropy, as it is often claimed
beyond the realm of equilibrium thermodynamics, at least for the

entropy as we understand it presently.
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Appendix A

We shall illustrate the postulates of LIT with a very simple
specific example that will keep the mathematics to a minimum.
Consider a rigid heat conductor (p = const., @ = 0) which is in a
nonequilibrium state. Only one variable is required to specify its
state and that will be taken as the energy density e(®,t). Then

(a) The local equilibrium assumption states that the
entropy density S(2,t) is given by
S(®,t) = S [p = const, e(R,t)]

or

(a-1)

ds 3s as de 1 de
H‘ﬁ"a_ep 3t T T ot

since @ grad vanishes in this case. Ve know from first principles

that if @ is the heat flux, the conservation equation for e reads

oe
P 3z + dv gd=0 (A-2)

because since @ = O there is no dissipation term.

(b) Combining (A-1) and (A-2) we get that

oS 1
Pyt =7 div g
or
98 g 1
P 3¢ tdlv 7 =+ q . grad T (A-3)
Defining the entropy flow as Jg E @/T (A-3) is the entropy balance
equation
oS
P 3%t div dg = ¢
where
d
o=—F .grad T>»0 (A-4)
T
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the product of the flow § times its force grad T is assumed to be
non-negative.

(¢) Equation (A-2) is undetermined. There are four
unknowns, e and § and only one equation. The third assumption now

states that the flux must be proportional to its force, so

q
g = - > grad T (A-5)
T
L
which 1s Fourier'’'s equation and.kf=;;§; 1s the thermal conductivity.
Using once more the local equilibrium assumption e(®,t) = e [p =
const, T(®,t)]

oe oT
at = Cy 5; (A-8)

assuming that Cy is still a function of the local temperature.

Combining eqs. (A-2), (A-5) and (A-6) we get that

oT
PCy 3% = div (K(T) grad T)
If K is assumed to depend only on T®d, defining D ——75— as the
FEv
thermal diffusivity we get finally that
oT o
3t = DV T (a-7)

which is the well known "heat equation” which given K may be solved
for specified initial and boundary conditions on T and VT.

Two remarks are important: The role played by S(Z,t) is
completely spurious and its calculation depends explicitly on the
solution to eq. (A-7). On the other hand, the structure of o serves
to indicate in a natural way which are the forces associated with the
fluxes present in the system. If eq. (A-5) is introduced in (A-4),

we see that
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2

2 1
KT [gra.d E} >0

which implies that K»0 is in complete agreement with experiment. 1In
this simple example the fourth assumption concerning the symmetry of
the matrix L is entirely unnecessary.
Appendix B

In this appendix we will sketch out how the Chapman-Enskog
solution to the BE is related to LIT. The full form for the BE is

well known to be [2],[7],[19]1,[31],[3%7].

of of

3t * e a7 =)];v1dn o) g [f(?,vl,t)f(?,V',t) - f(?,vl,t) £(2,9,8)]

(B-1)
vhere 0(2)dQ is the probability that a particle with initial velocity

¥ upon collision with a second particle with velocity ¥1 is scattered
into a solid angle dQ and ¥;', ¥’ are the final velocities of the two
particles, respectively. g = 1% - ¥;1 is the relative velocity of
the incoming or outgoing particles.

Let v¥(¥) be any dynamical quantity associated with the molecules
of the gas. Multiplying eq. (B-2) by this quantity integrating over
¥, integrating by parts the two terms in the left hand side and
successively transforming the right hand side making use of the fact

that d¥dv) = d9'd¥;’' and that the inverse collision exists, one gets

that
3] 0 — 1
3t ¥ taFt (W=7 H d9d?,0(Q) g ClYIL(£(P, IR I-£(DE(P,))]
(B-2)
where
Clvy]l = w(vl’) + y(?#') - w(vl) - v (B-3)
and
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1
v = a (T8 f £(2,9,t) v (¥) av (B-4)

n(?,t) being the local number density obtained from (B-4) when v = 1.
When v 1is one of the five collisional invariants, the mass m, the
momentum m¥ or the kinetic energy %nwz, according to eq. B-5, Clvy] =
0 and (B-2) then yields the five conservation equationsg,
respectively; namely,
EE
ot

ot K
P gt div;z: = 0

+ div (p) =0 (B-5)

de A
P gf tdivgd = - 7 : grad 1

where

1 t
(2.%t)
is the local hydrodynamic velocity and

m
e(®,t) = 20(%. %) Jﬁf(f,v,t) c® ag (B-7)

is the local internal energy density since @ = 9 - W(R®,t) is the

£
chaotic, random, or peculiar velocity. Also, the fluxes 2~ and g are

given by
R
7 =m faa £(2,9,t) dd (B-8)
! 2
g = ph o™ 2 f (P 9,¢)d3 (B-9)
Also, 1f we use the definition for H given in eq. (7), compute
j%!, prove that the contributions arising from the streaming term
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vanish after the BE has been substituted in the former result and

notice that the collision term can be written as

1 ££,
-7 f/df/‘dvl inopr (££, - £'8,') €0

1
using the same steps leading to eq. (B-2), one gets eq. (8). All

these results are therefore a property of the full BE provided the
intermolecular collisions are of electromagnetic origin to guarantee
the existence of the inverse collision.

Furthermore, multiplying eq. (B-1) by &nf, integrating over ¥
and performing two well defined integration by parts in the left hand
side, assuming that f(?,%,t) vanishes at the boundaries of T,% space,
wve get that

9
3t (pg) + div (Jg + pg ) = © (B-10)

wvhere pg is the entropy density defined by

Pg = -k [ f &n f 4a¥ (B-11)
Jg the entropy flux defined by,
Jg = -k fa £ %n £ dv (B-12)

and o the entropy production
o =-k Jfln f J(£f) av (B-13)
Furthermore, following the same steps leading to eq. (B-2) and using
the same inequality that appeared in the proof of the H theorem, we
see that 020 in accordance with assumption (b) of LIT.
We now come to the discussion of the Chapman-Enskog (CE) method
for solving the BE. According to assumptions (a) and (b) quoted on

P. 11 and 12 of the main text, we may write that

£(2,9,%) = £, 9/n,21) + w2, 9/m,2,7) + w2 @2 vfn, 0.1 +

@ea

39



where

o n 3/2 nl¥ - (2,t)1°
£277(2,%/n,2,T) = A2, t) 2TET(R. 5) exp | - 2ET(Z, t)
(B-15)

Recall now that f being a distribution function can be characterized
uniquely by the whole set of moments in the variable ¥. Also, by
definition, the locally conserved densities are given through its
first five moments. On account of egs. (B-14) and (B-15) we now
arbitrarily choose that all the information about these conserved
densities is contained in £(0) instead of depending on the full

expression for f. Therefore,

(R, t) =ff(0) (2,%,t) a9

1
(2, t) 2 TCR)) Jﬂ f(o) (#,9,t) ® a9 (B-186)

1

1
e(?,t) = gr= Ty f £€0) (2 9. 4) s mo? av

where 8 = ¥-4(%,t) is the random velocity.

With this arbitrary choice in the selection of the locally
conserved densities, all higher order correction terms of f which
appear in eq. (B-14) are enforced to obey a set of conditions known

as the subsidiary conditions which are clearly seen to be

1
J[f(n) g Vz} a9 = 0 o1 (B-17)
C

We now come to the discussion of how the CE fits into the whole
question of defining the entropy for nonequilibrium states. Without
writing out explicitly the arguments of each functioq)eq. (B-14) may
be easily recast into the following form
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£ =£0¢ 4 uol) 4 2 o) Foool) (B-18)
where clearly f(n) E éo) én)

Substitution of eq. (B-18) into (B-1) and collecting terms of
equal powers in u noticing that due to the functional assumption
expressed in eq. (B-14) the left hand side of the BE is always of one
order in W higher than the right hand side

of 3f 9dn
3t = an ot T
and .
of of ©On on
5§ = 55 5§ + ..., 5; , etc.

being given by (B-5) which already contains the gradients, one

arrives at the following set of linear integral equations:

Order u = 0 g0, £(0)_ ¢ (B-19)
Order u = 1

af(0) af(0) W

5t + %o Y4 = C(¢ ) (B-20)
where

co) = fdvlocmdngw(“(v')+¢(”<v1'>—¢(1)<v)-¢(”(vl>1f1(°)

(B-21)
is the linearized Boltzman collision integral, etc.

As eq. (B-19) indicates, the local Maxwellian distribution
function is a solution to the homogeneous part of the BE but not of
the full equation. When substituted in the streaming term it may be
shown [7],[39] to reduce to the equilibrium distribution function,
eq. (9))in the text for a large class of external potentials. Thus
this function is indeed a solution of the full BE; and as we have
insistently indicated in the text, the two functions are compatible
with a formula for the entropy.
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Now is eq. (B-10) satisfied to each order in u? To zeroth order
it is trivial since on account of egs. (B-2) and (B-3) and the fact
that wnf(0) is a linear combination of collisional invariants, o = O,
Ts = 0, g =0 and_Z;K; the stress tensor, reduced to n(f,t)kT(?,t%%} =
p(?,t{%L, p being the local pressure for an ideal gas and 1! the unit
tensor. Thus eq. (B-10) simply states that s(0) ig coﬁ;;ant along
the lines of flow and through egq. (B-11) we see that it is
analytically identical with the entropy for an ideal gas. Eq. (B-5)
then becomes the Euler equation for an ideal fluid (diy:€J$= grad p).

To first order in u things are more complicated. The left hand
side of eq. (B-11) may be explicitly evaluated and through a well
known theorem in linear integral equations [7]1,0191,[391, the

solution to the resulting equation may be shown to be of the form

—~» onT ot
oY) - _Qcerc. 57 -K (0)529 : <8_i‘) (B-22)
o 12
vhere C°C = CC - z C” 11 and ({(c), H(c) two functions obeying the
AarAaie At M
following equations
5 mc2 S
- \z - 2xF/C-= e(ad (e)d) (B-23)
m

- % = a8 co)
kT Man Maty
where C(¢) is defined in eq. (B-21) for arbitrary ¢. These equations
may be solved once the form of the molecular interaction is
specified, but this technical question need not bother us here.
We now first notice that when ¢(1) is substituted into egs. (B-

8) and (B-9) and we perform the integration we get that
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= 1
7 - - an(D - = div ¢ 11) (B-24)
where

U Buj
i)~ 2 9x j M
i1s the symmetric part of grad % and m is the shear viscosity given by

n

n= — (k1% b

- (B-25)

o
bo being a collision integral whose explicit evaluation requires the

explicit introduction of the molecular interaction. Also,

d=-&grad T (B-28)
where
5nk<
K=+ —F—1() (B-27)

is the thermal conductivity, and b; another collision integral eq.
(B-24), the Navier-Newton equation and (B-26), Fourier's equation are
just the linear laws mentioned in eq. (5) in the text. They
constitute the body of assumption (e¢) of LIT.

That eq. (B-10) is satisfied to first order in u is seen by
taking fn £ = &n £(0)(1 + 1ue(1) = pn £(0) 4 pn(1 + wep(1)) -~ gm £CO) 4

u¢(1l). Using the subsidiary conditions on 6(Dps(1) = 0 g0 that

1
a(ps(O)) q( ) W
ot tdv 5 =0 (B-28)
K
where o(1) = -g(1) graq (3&)+ T :fiﬁi . Eq. (B-28) is the entropy
A ar
balance equation as required by LIT; namely
(L
s L
S T
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a fact that has not been mentioned explicitly in the text.

To second order in u this analysis breaks down completely so
that (B-28) is no longer fulfilled and what is disturbing is the fact
that ps(2) becomes a funotion of (¢(1))2 which means that the entropy
depends on the gradients. This feature, as well as the proof of
Onsager’'s relations for a multicomponent mixture, will not be
discussed here but the reader is referred to other sources in the

literature [7],(281,[27].
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