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The Genesis of the Concept of Entropy

Michael J. Higatsberger

Institute of Experimental Physics

University of Vienna

1. Historical Aspects

The laws of mechanics were formulated by HUYGENS (1629-1695) and
LEIBNITZ (1646-1716). These laws were reduced to the Newtonian
axioms (1687: Philosophiae naturalis principia mathematica) in
the form that the sum of kinetic energy plus potential energy
remains constant. RANKINE (1820-1872) introduced the concept of
energy which was derived from the Greek words epyov or evepyetia
to distinguish energy from force. H. HELMHOLTZ (1821-1894) exten-
ded the mechanical energy terms to all then known forms of ener-
gy. HELMHOLTZ did this in his famous 1847 lecture at the Physical
Society in Berlin. Sodi CARNOT, however, discussed this subject
already as early as 1824 in Magdeburg, when he lectured about the
"motion producing force" of heat and fire and about the develop-
ment of proper machineries to do this. At that time James WATT's
(1736-1819) steam engine operated by thermal energy was already
known. The Tlaws of thermodynamics evolved and were governed by

the principles of conservation of energy and the Carnot cycle.



Hence the terms of energy and entropy - the latter is the second
lTaw of thermodynamics - are the main issues of thermodynamics.
The first Tlaw of thermodynamics simply states that mechanical
energy can be fully converted into thermal energy, while, accord-
ing to the formulation of Rudolf CLAUSIUS in 1850, the second Tlaw
of thermodynamics determines that heat cannot by itself go from a

cooler to a hotter body. The third law finally expresses the

impossibility to achieve T 0 by any physical process.

J. Robert MAYER published his ideas on the first law of thermo-
dynamics in 1841 while CLAUSIUS used for the first time the word
"entropy", which again originates from the old Greek words tpomn
and evtpomin, for a reversible or irreversible process. He called
it an equivalence value of conversion. The second law of thermo-
dynamics was then defined in the form: The entropy of an isolated
system cannot decrease but must increase in irreversible pro-
cesses; in reversible processes the entropy can utmostly be kept

constant.

According to Lord KELVIN (1824-1907) the Carnot principle or the
second law of thermodynamics mean "degradation -energy". He
divided energy in high-grade energy for mechanical and electrical
energy, medium-grade energy for chemical energy and low-grade
energy for heat. Of course, the total quantity of energy remains

constant also for Lord KELVIN. He said reversible processes are



processes of high-grade energy, while at chemical reactions
chemical energy vretains its grade. Heat exchange and other
irreversible processes give rise to a loss of grade. The grade of
energy can also be defined as corresponding to the negative
entropy, called "negentropy" - S. Since the second principle
states that the entropy S must always increase or remain con-
stant, for the term negentropy the result is a decrease or a

constant value at the best.

Early in our century the energy concept was further extended by

A. EINSTEIN's mass energy equivalence relation E = m-cz.

The range of energies involved in physical processes extend over
nearly sixty orders of magnitude. When the energy is measured in

the SI system, where 1 Ws = 1 Nm = 1 J, a supernova explosion has

42

an energy content of 10 Ws, while a typical chemical bond is of

-18

the order of 10 Ws. The stored rotational energy of our earth

30 Ws, several hundred millions more than all

is approximately 10
fossile energy fuel reserves of the world. Comparable to the ro-

tational energy of the earth is only the fusion energy potential.

In 1872 Ludwig BOLTZMANN introduced a statistical approach to
interpret the second law of thermodynamics. He gave this law a
meaning of probability. The direction of entropy thus was

evaluated as an order of 1lower or higher probability. His



well-known formula S = kelog W is engraved on his tombstone at
the Central Cemetery of Vienna. According to BOLTZMANN entropy is
a function of state. It was his genial idea to recognize that the
scheme of mechanics is not restricted to observable items like
energy, momentum or others. He realized that also functional
states exist which must be calculated. The Boltzmann formula
S = kelog W was in the explicit form not written by BOLTZMANN
himself but is due to Max PLANCK (1901). It is the relative
probability or more precisely the number of microstates of what
BOLTZMANN called "Komplexjonen", which are compatible with the
macroscopic situation. It is probably not widely known that also
the Boltzmann constant k = R/NA was introduced by PLANCK, who
originally was sceptical to BOLTZMANN's approach, but later on

became convinced and was fascinated by the new ideas.

Up to now in the majority of publications seldom the concept of
entropy was unclear, however, through the many varieties in which
the second and third laws of thermodynamics were interpreted,
misunderstandings resulted. Despite of the fact that the terms of
energy and entropy were introduced at about the same time and
both terms were equally important for the formulation of the laws
of thermodynamics, many people are familiar with energy but less

with entropy.



In a simple analogy entropy could be attributed to the activities
of a managing director of a large production firm, whose job it
is to determine the kind of production and the route to produce
it, while energy in such a picture would play the role of a
book-keeper, who is in charge of the balance sheet in which money

(energy) coming in and going out is recorded.

2. Experimental facts for the concept of entropy

If two gases, liquids or solid bodies of different temperatures
are brought into contact, a temperature change is observed in
both. Whenever the temperature change becomes zero, it is said,
they are in thermal equilibrium. The experimental evidence is
that the body with the higher temperature experiences a tempera-
ture reduction, while the body with the lower temperature experi-
ences a temperature gain. The technical term for this behaviour
is called the "transitivity of temperature". Thus temperature is
a value of state. FOWLER proposed 30 years after NERNST's and
PLANCK's works on the third law of thermodynamics to call the
functional character of temperature the law of thermodynamics

with the number zero.

The first law of thermodynamics can be written in the form

dUu = dQ + dW. (2.1)



Writing the law in this form dU is the change of internal energy
of the system in any interval of time, dQ is the heat received by
the system and dW is the mechanical energy or work received by
the system from outside. A1l three differentials refer to the
same interval of time. The equation defines dU assuming that dQ
and dW can be obtained independently by suitable instrumental
operations. Neither dW nor dQ taken separately are perfect
differentials, except if either dQ or dW is zero. However their
sum and thus dU is a perfect differential in the variables that
fix the state of the system. The "concept of state" itself is
assumed to be already formed and the variables which determine
the state must be known by independent experiment before thermo-
dynamics 1is applied. The "state of a system" is therefore the
complex of all its measurable properties. A state is fixed by its
appropriate variables in the sense that whenever the variables
resume their -former values, the body is again in this former
state as determined by all its measurable properties. From the
fact that dU is a perfect differential, the conservation property
of energy which 1is change of energy, follows by conventional

lines of argument.

Thermal energy dQ coming from outside implies that there is a
flow of thermal energy. A similar argument holds for mechanical
energy and there must exist a flow vector. The last statement is

easily understood, if the energy is the energy of the electro-



magnetic field. In that case the flow vector is the Poynting
vector. The first 1law of thermodynamics began as a formal
equation to define dU. It ends as an equation in which each term
has independent instrumental significance and as such it evolved

from a definition to a statement of a law of nature.

The second law of thermodynamics was formulated in differential
form as

dS = dQ/T. (2.2)

dS stands for the change of entropy of the system in question for
any reversible process during which the heat amount dQ 4is ab-
sorbed. Again dS is an equation of definition. But as in the case
of the first law of thermodynamics the equation is supplemented
by the statement that dS so defined is a perfect differential in
the state variables of the system. Therefore it follows that the
total increment of entropy obtained by integration passing from
an initial state to a final state is independent of the details
of the process and depends only on both the initial and the final
states. As each state may be assigned a single entropy number,
the difference of entropy between two states is found by taking
the difference of corresponding entropy numbers. Considering any
quasi-static process which brings the system from one state to

another leads to
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assuming that the process is at all times close to an equilibrium

situation.

Like energy also entropy must be accorded full localization in
space, because the system can be divided into subsystems in any
arbitrary way and the second law applied to every arbitrary
element. For this reason the existence of fluxes of entropy

account for the changes of localized entropy.

Heat flow 1is clearly an irreversible process. If a quantity of
heat Q passes by conduction from a hotter reservoir at the
temperature T2 to a colder reservoir Tl’ the Toss of entropy of
the hot reservoir Q/T2 and the gain of entropy of the cold

reservoir Q/T1 results in an entropy gain
S =0Q/T) - Q/T,. (2.4)

When the entropy of the cold reservoir increases, it is because
entropy is flowing into it. The entropy of the hot reservoir
decreases, because entropy is flowing out of it. Since T2 is
larger than Tl’ equation (2.4) demands that entropy is being

created. This example convincingly shows that a continuous steady



irreversible process 1leads to a continual entropy increase.
Therefore the general formulation for entropy idincluding both

reversible and irreversible processes is

dS 2z dQ/T. (2.5)

The first Taw of thermodynamics determines the conservation of
energy while the second law of thermodynamics 1in the above
formulation shows that entropy is only conserved in reversible

processes, but is not conserved in irreversible processes.

From the fact that
dQ = c-dT, (2.6)

where ¢ is the specific heat, the third law of thermodynamics is
derived, since for T going to zero also the specific heat ¢ would
tend to zero and would require an infinite entropy difference
between the state at absolute zero and the state at higher

temperatures.
"In any closed system, where spontaneously irreversible processes
take place and no heat is taken in from the outside, the entropy

increases. HELMHOLTZ argued, if

dS 2 dQ/T = (dU+pdV)/T (2.7)
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than one can also write

dUu + pdV - TdS =< 0. (2.8)

IfT the system is held at constant volume which requires dV = 0,

equation (2.8) reduces to

d(U-TS) =< 0. (2.9)

(U-TS) is called the Helmholtz free energy. On the other hand for
constant pressure (dp=0) one gets the expression (U+pV-TS) which

was named Gibbs free energy.

The Helmholtz and Gibbs relations are important in determining
equilibria conditions in chemical reactions and in equilibria

between phases.

The equilibrium conditions of thermodynamic systems can be
treated in analogy to the stability criterion in mechanics. A
stable equilibrium exists in a thermodynamic system and returns
to the original equilibrium conditions without being forced from
the outside. A thermodynamic system is indifferent, if no changes
in the equilibrium conditions take place. A thermodynamic system
is unstable, if the system deviates from the original equilibrium

conditions.
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A convincing experiment for a typical irreversible process is the
following: A stone falls in a gravitational field transforming
his potential energy into kinetic energy, finally hitting the
surface of the earth and changing the kinetic energy into thermal
energy, deformation energy and energy of sound. It dis evident
that this process of events is irreversible. Also nuclear fission
is a striking example where kinetic energy of the fission pro-
ducts is transformed into heat. But wusing the thermal energy
produced does not lead to fuse the fission products to the

uranium nucleus again.

Elaborating further the discussion, let us assume, two systems 1
and 2 are in contact and capable of exchanging work and heat. The
temperatures, work outputs, heat inputs and entropy inputs are:

T T

10 Tps MWys Wps Qs Qp and 5., S,
The first law requires wl - Q1 + w2 - 02 =0

and the second law S1 + 52 2 0

A. Irreversible transformation:

If T2 > Tl’

heat flows from the hot to the cold system with the result
wl =0, w2 =0 which means no work output;
02 = - Q1 : Q1 > 0 and

52 + S1 = Ql(l/T1 - 1/T2) > 0
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B. Friction:

When T1 = T2 = T, both systems are at the same temperature
and it follows
w2 >0, 02 =0, W, = 0, Q1 > 0.
Work is done by system 2 and heat is produced in system 1 and
52 + S1 = QI/T = w2/T > 0.

When heat passes into or out of a body, the quotient thermal
energy divided by the absolute temperature of transition is the
term entropy. The dimension of entropy is J'K'l. Heat capacity

has the same dimension.

An entropy change can occur also at the same temperature, f.i.
when a solid sample is melted. Computing the entropy change of
1 kg ice which is melted and converted to water at 273.16 K (OOC)
leads to

Sy - S = Q/T = 335'103J/273.16K = 1226 J-k" L.

Q is the heat required to transform ice at the same temperature

into water and is called heat of fusion or latent heat.
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3. Entropy of living systems

It is somehow surprising that the temperature window for all
Tiving systems Ties within a range of approximately 100 K. At
about 300 K human Tife exists on earth. In contrast the surface
temperature of the sun is roughly 5000 K and the fusion tempera-

7 x.

ture inside the sun is of the order of 2 to 3-10
In our physical world natural cyclic processes obeying the first
and the second Tlaw of thermodynamics use also roughly 100 K
temperature difference. Incoming radiation from the sun is partly
reflected and partly re-irradiated to the universe. But the rest
of the energy is used for a cyclic process such as the evapo-
ration of water from the sea into the atmosphere, then condensing
in the colder atmosphere and finally coming down from the sky in
form of water droplets and rain. In nature most of spontaneously

started processes are irreversible.

Organic life is determined and dependent on the laws of thermo-
dynamics. These laws have a range of experience. In quantum
biology the energy of a single cell is very small and therefore
the effect of the wave aspect is dominant over the corpuscular
aspects. The biological energy equation is of the kind

AE hel/t (3.1)

biol.
with t© being the duration of a cell working cycle or
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{1= k aT. (3.2)

In this biothermodynamical law besides the working cycle t and
the temperature difference AT the Planck constant h and the
Boltzmann constant k are intermingled. Rewriting the equation in

the form

TAT = % = const. (3.3)

shows the variability of 1ife. For 1living systems AT has a very
limited range and therefore =t can only vary inversely in a
similar range. Another conclusion of the equation is the require-
ment of energy for bringing order in human systems. If energy is
not supplied anymore from the outside, the thermodynamic process-

es in a living system lead to an entropy increase.

In 1943 Erwin SCHRUDINGER asked the question: What is 1ife? He
answered this question by saying: A piece of matter is alive, if
it is continuously "doing something", if this matter is moving
and is in a material exchange with its surroundings. Teilhard de

CHARDIN said: Life is a challenge to entropy.

A state which is difficult to distinguish is low-ordered. The lo-
west organization of biological systems means death. In contrast

an high-ordered state means 1ife or at least supporting life.
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4, Entropy in quantum physics

HEISENBERG showed in 1926 that the phase-space (position -

velocity) is composed of cubicles which are quantized.

The product ax - Av, = h/m relates the Heisenberg uncertainty
relation with the Planck constant

0'34 W 52.

h = 6.6-1
In how many ways can N molecules of a monoatomic gas be dis-
tributed over the cells of phase space, each with the volume
(h/m)3 in order that their total energy for one mole is equiva-
lent to the macroscopic value 3RT/2 ?

The answer is
3/2 N
(2ﬂeka) V } (4.1)

P ={
h3

with e the base of the natural logarithm and

V the volume occupied by the gas at the temperature T.

Calorimetric entropies are obtained by measuring the specific
heat of a substance together with its heat of fusion and boiling.
To compare these values with spectroscopic-calculated entropies,
it is necessary to derive out of the probability number P the

entropy value. This 1is best done by assuming that at low
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temperatures the gas becomes solid and changes to a crystalline
structure. The crystalline state 1is characterized by regular
crystal lattices. Since N molecules occupy N fixed places, the
first molecule has N places to choose from, the second N-1 and so

on, Thus at T = 0

P, = NI, (4.2)

Using the Stirling formula which is a good approximation for P0

gives log P0 N Tog N - 0.4343 N.

Since 0.4343

log e, equation (4.2) can be written in the form
log Py = N Tog N - N Tog e = N Tog N/e. (4.3)

The entropy S can then be found as

R
= o73g3 (109 P - Tog Py) =

(27 mkT)3/2 &%/2 y
h3 N

R

= 0.7343 199 L)

with m = M/N and M being the atomic mass number of the substance

and the Boltzmann constant k = R/N. The final result is

R (27MRT)3/2 3/2 y . (4.5)

> = 5.4353 199 330
Evaluating equation (4.5) for T = 300 K and the volume at one
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atmosphere with V = 0.02446 m3, a comparison of spectroscopic

(calculated) and calorimetric entropies according to
S = (108.765 + 28.715 log M)J K™} (4.6)

with M the mass number shows excellent agreement.

Table: Comparison of spectroscopic and calorimetric entropies of

monoatomic gases at 300 K under 1 atm in J K-1
Gas M Spectroscopic Calorimetric
entropy entropy
Helium 4 126.06 126.18
Neon 20.18 146.23 146.61
Argon 39.94 154,73 154,73
Mercury 200.6 174.87 175.49

When working on his way of formulating the second law Ludwig
BOLTZMANN developed the so-called "H-function" or sometimes also
named "logarithm-function"

H = srrFlogFaAuavaw (4.7)
with AuavAw being the volume element of the velocity space. F is
determined from the Maxwellian distribution function and
F(uvw)Auavaw turned out to be the number of molecules in the
volume element of velocity space. BOLTZMANN proved that H is a

pure number by integrating all velocities from -« to +~, He also
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showed that H is only dependant on the analytical form of F. For

equilibrium conditions

C L (4.8)
and for all non-stationary conditions
o (4.9)

Equations (4.8) and (4.9) are known as BOLTZMANN's H-theorem.

5. Entropy of radiation

The entropy of black body radiation was formulated by Josef
STEFAN and Ludwig BOLTZMANN using their famous radiation Taw in

the form of

N=oqoT%, (5.1)
N is the radiation power density in Wm'2 and
o = 5.6696-10'8 Wm'ZK'4 is called the Stefan-Boltzmann constant.
Therefore from

d(nv) + N gy
gs - dU + pdv | 3
T T

with N=oT

3

dS becomes dS = 4 ¢ {VTZ dT + 1/3 TS dV}.
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Integrating and using the boundary conditions that for
T=20, S =0,
the entropy becomes the form
S = (4/3)0 T3 V. (5.2)
This relation <can also be obtained when wusing Maxwell's
thermodynamic relation (GS/GV)T = (cSp/aT)V and the equation for
radiation pressure p = N/3 = (0T4)/3 as can be easily seen. The

entropy density of the black-body radiation is

s T3 (5.3)

<|wn
[
w|

6. Entropy and cosmology

EINSTEIN's geometrodynamic law and the observation of HUBBLE lead
to the "big bang" concept with an expanding universe, but equally
to the "black hole" collapse situation. There are three levels of

gravitational collapse at

1. the universe
2. the black hole and

3. the fluctuations at the Planck's scale of distances.

The collapse of the universe can be reviewed as a mirror image of

the "big bang". Collapse of matters to form the "black hole" can
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be reviewed as a collapse of a dense white dwarf core, when the
core exceeds the critical masses 1 M or 2 M (Schwarzschild-mass)
at which a neutron star is no Tlonger a possible end-point for
collapse. The other possibility is a coalescence one by one of
the stars in a galactic nucleus to make a "black hole" of mass

6 9

M to 10° M. A black hole can be defined as a region

between 10
of space time that cannot communicate with the external universe.
The boundary of this region is called the surface of the black
hole, or the event horizon., Finally collapse at the Planck's
scale of distances is taking place everywhere and all the time in

quantum fluctuations. This 1is called the reprocessing of the

universe.

The Planck's units are
-35

L' = (F 6a/e)1/2 - 1.6-1073° ¢
T = (F 6/c”)/2 - 5.4.107%%
M' o= (F c/6)2 = 2.2.1078 «kq.

These units were chosen by PLANCK because relative to them all
constants in any field of physics can be expressed as pure

numbers.

The so-called "big numbers" of physics reveal interesting ratios.

80

There are about 10 particles in the universe. The ratio of the
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presently known expansion of the universe to the size of the

14m 40

elementary particle is about 102%m/10” £ 1077,

The ratio of electric forces divided by gravitational forces 1is

e2/G.mM = 1040,

The size of an elementary particle divided by Planck's length is

ez/mc2 20
5,172 ¢ 10
(hG/c”)
Finally the ratio of photons in the universe to the number of

barions in the universe is about 1010.

If physical constants change by as little as one percent in one
way or the other, we would have red or blue stars, in which our
sun would not exist anymore and therefore no 1ife would be

possible.

In a contribution to the volume for the International Colloquium
on Science, Culture and Peace in honour of V.F. WEISSKOPF, Walter
THIRRING using a simple argument derived for the entropy of a
black hole with the mass of the sun, the number of 1076. His
argument was

energy = c.momentum = ch/wavelength = c3ﬁ/kM.

Since entropy of radiation is

number of particles = total energy/energy per particle =
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= Mc?/(c3R/kM) = (kM/c2)2/(kR/c3) = surface [measured in
Planck length = (kh/c3)1/27,

When the surface is 106 m2 and the Planck Tlength is 10'35 m, one

ends up with the quoted number of 1076.

The application of the concept of entropy to the universe has
lTead to controversial views extending from "entropy death" over
the opinion that other worlds exist, where the entropy constantly
decreases, up to the idea of an oscillating cosmos. In this paper
only a few typical applications could be dealt with, but there
are numerous other applications of the entropy concept which have
enriched our physical and philosophical thinking. To conclude
with a representative example, the last chapter is devoted to the

growing field of the theory of communication.

7. Mathematical analogy of entropy and information

It has been shown that in operations involving information a
quantity appears which is the negative of the quantity usually
defined as entropy in similar situations. Information can be said
is the raw material and consists of a mere collection of data
while knowledge requires a certain amount of thinking and an
agreement to organize the data by comparison and classification.
The scientific theory of information started at about the time

when computers where introduced. Information is often called
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negative entropy or negentropy for short. What means information?
If someone informs his partner that he is going to visit him
within the next week at any time at full hours from 10 a.m. to 6
p.m., the possibilities are 7 days times 9 hours = 63-fold. If
the visitor announces that he will arrive on Thursday, the
possibilities are reduced to 9. If finally the arrival is spec-
ified for 11 a.m., the precision of information reaches the

lowest possible value of one.

The above example implicitly directs to the question of what is
the unit of information. In computer science the binary numerical
system has been adopted. A1l numbers are expressed by sums of

power of two. 63 for instance is the sum of

63 = 2% + 2% 4 23 4+ 22 4 Pl 4,0,
written in the binary code as 1 1 11 1 1, while
9 = 23 4+ 0.22 + 0.2 4+ 20

is written in the binary code as 1 0 0 1.

The unit of information distinguishes between two possibilities
(P), namely
I = c+log2 =1 = 192 2.
This unit is called one bit. Furthermore
c = 1/log2 = 3.322 and log stands for the 1logarithm of
base 10.



24

Thus information in general is
). (7.1)

If the logarithm to the base 2 is used, then the above equation

I = 3.322 (logP - logP

before after

reads

I = (7.2)

197Phefore = 192Pafter:
On the foregoing example
I1 = 3.322(70g63 - 10g9) = 2.807 bits and

12 = 3.322-10g9 = 3.17 bits.
By definition information has the value one when there are only

two possibilities to choose from. 192 N=1i4f N = 2,

If one asks, how many binary digits (bits) requires a pack of 32
different cards, from 32 = 2" it follows: n = 5. Thus

I = 19,32 = 5 bits
and consequently 2 packs of cards require 10 bits, because

P1-P2

P with P, = P2 = 32.

1

I =1, + 1 (7.3)

1 23
this example shows the addidivity of information.

Applying the foregoing to the Boltzmann equation leads to
S

kelnP = 2.303 -k-logP =

-23 1

«logP«J.K " =
1

2.303-1.38-10
-23

3.178-10 lTogP.J-K"~



25

and Iin bits - 3.322 1logP.

Therefore
1 bit = 9.567-10"2% g.x"1 or
1 J-k~! = 1.045-1023 bits.

Entropy is found to be the logarithm of the probability number.

A further example on information can be constructed with the
alphabet: The English alphabet consists of 26 letters plus one

space between words to make up sentences.

Therefore I = G-19227 bits.
If 27 symbols would have an equal probability in a sentence of G
letters, one would need

I = 19227 = 4,76 bits per letter.

If P; is the probability of the jth

determined in an average text, the average information per letter

letter as experimentally

can be written according to SHANNON as

and

P
It
[«p]
.
p
—~
~
(&3}
~—

A telegraphic information is submitted via a combination of dots
and dashes - a binary information Tike 0 and 1. If

with Pp = NO/G and Py = Nl/G’
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it follows

Py * Py = 1 and P = GI/Ny! NI

I =K 1InP =K I[In G! - 1In NO! - 1In N1!]

Using the Stirling formula
Tn Q! =Q (InQ - 1)

which is a good approximation for large values of Q, we get

I K LIn G! = Tn Ny! - Tn N, 1] =

0 1

K [G(In G-1) - No(ln N0-1) - N1(1n Nl-l)].

0 + N1 , the above formula is reduced to

n

Because of G = N

I =K [G In G - N0 Tn N0 - N1 Tn N1];
again with G = N0 + N1 it follows
N N N N
- 0 0 1 1
Iz-KG[-G—]nG_+G_]nE_]
i=1/6= - K[p0 In Pg t Py In p1].
Generalization leads to Nl’ N2 ..... Nj ..... NM
j=M M
G = I N.; I ps =1
j:lJ j:lJ
j=M
P =Gl/ I N,!
j=1"
M
I =K 1InP=KTI LIn(G!) - £ ITn (N,!)] =
=1 J
J
M
S 1 - I N. .
K [G Tn G z NJ Tn NJ]

i=1
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M
I ==~ KG -+ z (N,/G) In (N.,/G) =

i1 J J
J
M

= - KG <« Zp. Inp.
J'=1J J

For G = 10000 one gets:

I

10000 19227 = 47600 bits.
If a distribution of Tletters and spaces as experimentally de-
termined is used, one finds because of

M

i=1/G=-K =« p, Inp, =4.03 bits.

j=1 3 J
Information is the result of a choice of possibilities. However,
information is not the basis for a prediction to make another
choice. Information is a function of the ratio of the number of
possible answers before and after an event. The logarithmic for-
mulation is chosen in order to permit summing up information from

independent situations. Using the concept of entropy one could

say, a "mirror-like entropy" measures the lack of information.

Most physical problems are incompletely defined. Normally only
the values of some microscopic variables are known, but their
precise position in space and the velocity of the individual
particles contained in a system are not known. Since precise
scientific definitions often initially formulated as postulates

are needed, scientific "jargons" are employed to cope with it.
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