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SYMMETRY IN ART AND NATURE: THE TWO LEONARDOS

Bulent I. Atalay, Department of Physics, Mary Washington College

Abstract

In nature one cannot help but observe symmetric shapes and regularities at the
macroscopic and at the microscopic scale. Picked up virtually as subliminal messages,
these same conditions have long been used by artists to organize and compose their artistic
creations. A millennium before crystallography became a science, Moorish artists were
producing carvings displaying intuitive understanding of the space lattices. Similarly
certain numbers and ratios found in nature were being incorporated -- usually unwittingly,
and sometimes consciously -- by artists into their creations. The numbers comprising the
Fibonacci Series (1, 1, 2, 3, 5, 8, ...), and that ubiquitous ratio issuing from the series,
(1.618 034 ...) find significance in genetics, phyllotaxis, in mathematical mosaics and in
crystallography. Among artistic creations it is found in the proportions of the pyramids of
the the Valley of Gizeh,in the Parthenon, in the paintings of Leonardo da Vincl, in the
music of Bach and Bartock, and even in the altogether prosaic -- in three-by-five index
cards.



SYMMETRY IN ART AND NATURE: THE TWO LEONARDOS

In nature we observe symmetric shapes at the macroscopic level both in animate and in
inanimate objects. At the microscopic level beyond the capabilities of our natural senses, and at the
supra macroscopic, some of the same shapes, symmetries, and regularities prevail. The cross-section
of the micro tubules in the heliozoan, magnified one-hundred thousand times, displays the same
spiral shapes as do the horns of the ram. and multiplied another hundred billion billion times, that of
the structure of a spiral galaxy. At one extreme the observing apparatus may be an electron
microscopic or a scanning-tunneling microscope, and at the other, an optical or radio telescope.

With crystals, electron diffraction technology reveals certain symmetries which also manifest
themselves at the macroscopic level. Crystallographers identify five possible Bravais or space lattice
types in two dimensions, and fourteen types, in three dimensions. All of the two dimensional and
some of the three are found in Man’s artistic creations, in his art and architecture. A millennium
before crystallography became a science, Moorish artists -- Sunni Moslems, forbidden to produce
likeness of humans -- were creating magical calli graphy and geometric designs displaying intuitive
understanding of the space lattices. This is nowhere more dramatically illustrated than in the stone
carvings at the Alhambra Palace in Granada and in the Great Mosque in Cordoba.

Meanwhile, the recurrence of certain numbers and ratios in nature were being incorporated
usually unwittingly, but sometimes consciously, by artists into their creations. The numbers
embodied in the Fibonacci Series (1, 1.2, 3. 5. 8, ...) are very often the very same ones significant in

genetics and in phyllotaxis (pertaining to arrangements of leaves and branches on plants). The

ubiquitous ratio issuing from the series. (¢=1.618034 ...), is approximated in the proportions of the

Cheops and Chephron pyramids, in the Parthenon. in the paintings of Leonardo da Vinci, in the
architecture of Le Corbusier, in the music of Mozart and Bartok, and in the altogether commonplace
-- in three-by-five index cards, and in postcards.

Just as symmetry can produce a sense of harmony, balance and proportion, too much

symmelry in certain contexts, such as in an endless line of row houses, can have negative emotional



impact. And conversely, just asymmetry can produce a sense of discord and lack of proportionality,
in some instances, such as in the shape of an egg, (in distinction to a smooth sphere), can generate a
positive emotional response -- a sense of release and freedom. Thus, released from the prejudice of
viewing only perfect symmetries as ideal, the Alps can be seen as magnificent. Likewise, the finest
examples of visual art and music are anything but endlessly regular. Indeed, the notion of “the
monotonous” is one of artistic or social aversion. Subtleties in the laws of nature often involve
recognition of asymmetries or broken symmetries. Indeed, physical reality melds elements of
symmetry and asymmetry. Total symmetry would require absolute and endless homogeneity. Total
asymmetry would mean complete chaos, or total absence of order.

It is not the purpose of this study to make an exhaustive inventory of examples, of natural
and artistic phenomena which demonstrate the same patterns, but rather to scrutinize the symmetries
and patterns at a fundamental level, to analyze the possible forces which might produce similar
shapes at wildly disparate scales, to review the notion of aesthetics, and the mathematics underlying
aesthetics. By studying the interdynamics of art and science what gains a sense of the confluence of
art and science, and to a lesser extent, a modicum of the psychology underlying the human affinity
for symmetry. This last message, however. will be regarded as a tacit one, since any serious

cogitation on the psychology of art summons forth a picture of fishing in muddy waters.

I. Mathematical Mosaics
Though God has given to men the best and most perfect understanding of wisdom and
mathematics, He has allotted a partia) share 1o some of the unreasoning creatures as well...
This instinct is especially marked among bees... They prepare for the reception of the
honey the vessels called honescombs. with cells all equal, similar, and adjacent and
hexagonal in form.

Pappus. AD 4th Century (Thomas 39)

A figure in two dimensions has two types of symmetry. It has 'line symmetry', if a line can
be drawn through it so that each point of one side of the line has a matching point on the opposite

side at the same perpendicular distance from the line. Itis readily seen that an equilateral triangle



possesses three-fold line symmetry; a square, four-fold line symmetry; a regular polygon on n-sides,
n-fold line symmetry. Finally, a circle has infinite-fold line symmetry.

A figure has 'point symmetry' if it can be rotated about a point so that it coincides with
g p Y ry p

original position, but specifically excluding the trivial case of rotation by a full turn, or 2 radians.
An equilateral triangle can be rotated about a point at its center by 2n/3 radians and by 4w/3 radians
in fulfilling the condition above. A square can be rotated through a point at its center by 2/4, 4rt/4
and 6m/4 radians in order to replicate the original picture. A regular polygon of n sides should

possess (n-1)-fold point symmetry, with rotations by 2nt/n, 4/n, 6n/n, ..., 2(n-1)x/n radians all

recreating the original position.
The expression 'mathematical mosaics' refers to configurations of regular polygons which
completely cover a surface, so that an equal number of polygons of each kind are arranged around a

regular array of points called lattice points. Six equilateral triangles can be arranged in this manner
and rotations by 2n/6 radians would carry any one triangle onto an adjacent one. This situation
could be described as a three-fold symmetry axis existing in a lattice, seen in Figure 1. Similarly a
four-fold symmetry axis could exist with squares arranged around a lattice point; there a /2 radian

rotation would carry a square onto an adjacent one. Finally, a six-fold symmetry axis could exist

with regular hexagons arranged around a lattice point, seen in Figure 2.
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Figure 1. Equilateral triangles, used in tiling a flat Figure 2. Hexagons, used in covering a flat surface.
surface. Squares can also be used for the same Indeed, the hexagons can be regarded as the triangles

purpose. in Fig. 1, taken six at a time,



Here rotations by n/3 radians map hexagons onto adjacent hexagons. If the surface is to be covered

by the same kind of regular polygon, the possibilities turn out to be limited: equilateral triangles,

squares, and hexagons.

It is seen in Figures 3 and 4 that pentagons (which call for rotation by 25/5) or heptagons (by

2n/7) cannot by themselves produce mosaics. It is also impossible to make mosaics with regular

octagons or dodecagon only. If one is not restricted to regular polygons, then other shapes, such as
rectangles, parallelograms, isosceles triangles can combine in homogeneous arrangements. Finally,
if one is not restricted to homogeneity, i.e. a single type of tile, then combinations of different
shapes can also be brought together to fill out surfaces in a manner in conformity with the definition

of mathematical mosaics given earlier.

Figure 3. Pentagons armanged contiguously Figure 4. Contiguous Heptagons on a flat surface
leave gaps in the shape of rhombuses. result in overlapped areas.
In Figure 5, one can see regular polygons of octagons and squares clustered together, and in Fig. 3,
pentagons and rhombuses. In fact, the number of kinds of regular polygons on the plane is

unlimited.
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Figure 5. A combination of octagons and squares used in tiling a surface.



It was seen above that among regular polygons, only those with angles at the summit of n/3,

nt/4, a 7/6, (each a submultiple of 2x), or triangles, squares and hexagons would allow equipartition

of the plane. In the case of the hexagon, however, the wall-material is minimized. The honeybee,
referred to by Pappus, builds the honeycomb with hexagonal cells, thereby minimizing the required

wax, and presumably the labor.

a—

d

~
\

p4 /\

Figure 6. Penrose Tiling, in which rhombuses of two different forms have been used in tiling a flat

surface. The ratio of the number of 'fat rhombuses' to that of 'skinny rhombuses' arranged on an infinite

plane turns out 1o be 1.618 034. Moreover. the tiling has the physical significance of being a two-

dimensional analogue of a quasi-crystals.

Beyond the regular polygon used in mathematical tiling are a virtually unlimited number of
abstract shapes, all understood in terms of symmetry operations allowed on a flat surface. The
Moors of Northern Africa (and Spain). and the Selguk and Ottoman Turks of the Middle East
developed two dimensional abstract desi gn and calligraphy to a level of extraordinary sophistication
and beauty. The Moors, in particular. adorned their special buildings with patterns revealing tacit
understanding of space symmetry concepts, epitomized in the tiles of the Alhambra Palace in

Granada, and the Great Mosque in Cordoba. In Fi gures 7 and 8 are reproduced a pair of examples

from the latter location. In the first a leaf motif appears in two shades, a dark leaf pattern situated



horizontally, and a light one, vertically. Obvious symmetry operations are translation, as well as
vertical or horizontal reflection. In addition, rotation by = radians around a lattice point, also leaves
the overall pattern unaffected. If the two different shades are ignored, then rotation by n/2 radians

also leaves the pattern the same. Furthermore, there is the two-fold symmetry in reflection across a

horizontal line, and so too, across a vertical line.

\,

Figure 7. Leaf motifs from the Great Mosque in Cordoba, appearing in two different shades not seen. (Bronowski 73)

Figure 8. Stylized triangles also from the Great Mosque in Cordoba. The triangles are actually
seen in four different shades, not seen in the illustration above.

In Figure 8, four shades are displayed in the pattern of stylized equilateral triangles. The

pattern is invariant to translation vertically and horizontally. A subtle quality of these symmetric



figures, however, leads to violation of reflection symmetry. If these triangles can be regarded as
‘clockwise-twisted', then reflection across horizontal or vertical lines would render them

‘counterclockwise-twisted.' If the color differences are ignored, the pattern also possesses six-fold

rotational symmetry against rotation by n/6 radians, evocative of Figure 1 for equilateral triangles.

The Twentieth Century Dutch artist M. C. Escher employed symmetry operations in order to
generate inexhaustible patterns of realistic figures in his graphic artwork, several of which are
reproduced in Figures 9-12. Unencumbered by religious interdicts such as the ones imposed on
Islamic artists, Escher drew human and animal figures as often as he did abstract design.

In Figure 9 and 10 the patterns represent homogeneous figures of horsemen in one case, and
swans in the other. There exists the obvious symmetry in translation in vertical and horizontal
directions. However, because of the two-color design, reflection (plus translation diagonally) does

not leave the pattern invariant. Ignoring the differences in colors, this symmetry would be secured.

Figure 9. Horsemen, Figure 10. Swans, Figure 11. Fish and Birds.
(M. C. Escher)

In Figure 11, a mosaic has been created from two different types of figures, and in two
colors. Again, translation vertically or horizontally leaves the pattern unchanged. Reflection

symmetry would be established only if the difference in color is suppressed.



In Figure 12, entitled 'Drawing Hands', the symmetry operations are much more difficult to
analyze in terms of translation, rotation and reflection. Nevertheless, as a realistic rendering of a

pair of hands seen at different angles, it depicts a fascinating study of a right hand giving actuality to

a left hand, which is, in turn, creating the right.

Figure 12. 'Drawing Hands'. At first pale, Escher’s illustration appears to represent the image of a hand
reflected in a mirror, but clearly bi-lateral symmetry is absent. Further scrutiny, suggests point symmetry --
or a two-fold rotational symmetry, but neither is that the case.

Polyhedra

In the last section it was seen that the different types of regular polygons which could create a
homogeneous mosaic were only three in number. However, irregular mosaics, consisting of different regular

polygons, are unlimited in number.



'Regular polyhedra’ are defined as three dimensional shapes, comprised of regular polygons for their
surfaces, with all the surfaces, edges and vertices identical. They are also known as 'platonic solids".!
The five types of regular polyhedra are the tetrahedron, the octahedron, the icosahedron, the cube, and the
dodecahedron, can all be seen in Figure 12.

Figure 12. The Regular Polyhedra.

* The tetrahedron is comprised of four equilateral triangles, with four vertices, and three triangles at
each vertex.

* The octahedron consists of eight equilateral triangles, six vertices, with four triangles at each vertex.
(Let us reiterate that six equilateral triangles around a point would lie flat.)

* The icosahedron consists of twenty equilateral triangles, with twelve vertices, and five triangles at
each vertex.

* The cube consists of six squares of eight vertices and three squares at each vertex. (Recall that four
squares around a point would have formed a flat surface.)

* Finally, it will be recalled from Figure 3 that three pentagons arranged around a point failed to close
up on the plane. If the gap is to be closed, a ‘cupping' occurs, and the vertex thus created becomes one of the
twenty vertices of a dodecahedron, a three dimensional figure which has twelve pentagons for its surface.

By mixing a variety of regular polygons, while adhering to the condition that at all vertices the

arrangement of polygons is the same, one obtains the closed shapes called 'semi-regular polyhedra'. For

* For the Ancient Greeks there existed only four elements in nature--earth, fire, air and water--and different admixtures
of these elements explained the composition of all materials in nature. To Plato atoms of fire had tetragonal shape;
atoms of earth, cubic; atoms of air, octahedronal shape; and those of water, icosahedronal.
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example, the icosahedron with twenty equilateral triangles, in having its vertices cut, becomes a ‘truncated
icosahedron', a figure characterized by two hexagons and one pentagon at each vertex. Another semi-regular
shape the cuboctahedron with fourteen faces, (eight of which are equilateral triangles and six squares), is
created by taking the centers of the edges of a cube or of an octahedron. Here a physical significance is to be
found: the arrangement offers the model for close-packing of identical spheres in space, which is of
considerable interest in crystallography. In the following section the classification of crystal structure will be

presented within a more general topic about patterns in nature.

N_J—

Figure 13. Two Semi-Regular Polyhedra: The Truncated Icosahedron and the cuboctahedron.

II. PATTERNS IN NATURE

At a fundamental level, the symmetry of atomic orbitals determines the type of bonding in atoms, and
ultimately the properties of matter in the bulk. such as hardness, conductivity, boiling point, transparency, etc.
At a still more fundamental level. it is the symmetries in nucleon orbitals which is intimately connected to
nuclear shapes, nuclear stability, and ultimately to the relative abundance of elements in nature. Serious
discussions of orbitals educes quantum mechanics and its exclusive domain of wavefunctions, and would take
us too far afield. The shapes of macroscopic crystals, including gemstones, however, involves geometric
arrangement of atoms at the microscopic scale. and can be discussed in terms of space symmetry operations

without eliciting quantum mechanics.
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The Architecture of Crystals and Quasicrystals

There are only certain kinds of symmetries which our space can support, and it is these that are
enshrined in crystals--which are after all well ordered arrangements of identical unit cells, fitting together
regularly and periodically to fill space. Mathematical mosaics in two dimensions become a good analogue for
the structure of crystals in three dimensions. It was seen in Section II that the three-fold, four-fold and six-
fold rotational symmetries corresponding to the equilateral triangle, the square and the hexagon. And five-
fold symmetry was specifically ruled out since the associated pentagons alone could not tile a plane.

In three dimensions, although a single molecule can have any degree of rotational symmetry, an
infinite periodic lattice cannot. Further, it is possible to make a crystal from molecules which individually
have five-fold rotation axis, but the lattice cannot support a five-fold rotation axis. The unit cell structure of
most crystals is based on Platonic solids, such as the cube, tetrahedron and the octahedron.

In 1984 an entirely new class of materials were first identified which appear to have a structure based
on another type of platonic solid. the icosahedron, which has equilateral triangles for its twenty faces.
However, since five faces meet at each vertex, there is a five-fold rotational symmetry, in violation of one of
the most fundamental theorems of crystallography. This class, which Nelson (86) calls 'Schectmanite' is
represented by certain materials, including an alloy of aluminum-magnesium, which are cooled extremely
rapidly.

The structure of quasicrystals can best be understood in analogy with Penrose Tilings, in which a
plane is tiled aperiodically. but possesses long range translational order, as well as orientational order (recall
Figure 6). Consisting of only two shapes, both of which are rhombuses--but one with internal angles of 36
and 144 , and the other with 72 and 108 . the tiling calls for certain 'matching rules'. Like quasicrystals,
Penrose Tilings have a kind of five-fold symmetry., since the parallel lines of the two types of thombuses
intersect at angles which are multiples of 72, or one-fifth of a circle. Of particular interest for the present
paper, the ratio between the number of ‘fat rhombuses' and 'thin rhombuses' is the ‘golden mean’, (1.618 034),

the subject of Section IV,
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Spirals in Nature

The geometric regularities of gemstones are manifestations of the same regularities found at the
microscopic scale, and space symmetry operations and mathematical tiling rules assist in classifying the
different types of crystal structures. An entirely different pattern in nature, the spiral or coil, is encountered at
dramatically disparate scales, and in basically three different forms--the hyperbolic, the Archimedian, and the
logarithmic. The rather obvious key to spiral formation of any type is the different growth rates of two
surfaces, with the slower growing surface being gradually enclosed by the faster growing one. This simple
rule offers a connection among strikingly different phenomena, and it is only when one takes a moment to
ponder, that the commonplace becomes wondrous, and the wondrous, commonplace: Among others, one
might contemplate the shapes of the chambered nautilus (seen in Figure 15); the tusks of a mastadon; pairs
of horns on a ram; shavings from a wood plane; the claws of a cat; the dried leaf of a poinsettia; the fangs of
a saber tooth tiger; the myriad of gastropods; the human lip, curved gently outward, with the inner tissue
growing faster than the outer; the swirling cloud patterns in a hurricane; the arms of a spiral galaxy which can
stretch hundreds of thousands of light years across (seen in Figure 19). Finally, there is the agent of the
genetic code, deoxyribonucleic acid or DNA. Here a pair of columns of sugar and phosphate molecules
assume their characteristic spiral shape because of the unequal lengths in their edge bond. In short, it is
skewed molecular units which give shape to the double helix. Moreover, the actual proportion exhibited by

the DNA, according to Harel et al (86), is 1.62, (Figure 16).

Figure 15. The Chambered Nautilus Figure 16. The DNA Molecule with
length-to-width ratio within one
cycle of 1.62. See Harel gt al (86)
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The hyperbolic spiral is described in polar coordinates by r=-k/(a/2+8) with k constant, (Figure 17).
The curve becomes asymptotic to x=-k in the limit when 8—»/2. Fronds of the sago palm and the fiddlehead,
a type of femn, resemble hyperbolic spirals in that they leave the stem straight and only at their tips become
coiled.

The Archimedian spiral, which is also observed in nature, appears similar to a strip of
uniform thickness, coiled tightly around a central axis. It is a spiral which replicates the grooves of the old-
fashioned record, or a roll of tape. Magnified 110,000 times, the cross section of the axonome of the giant
heliozoan, E nucleofilum, displays a microtubule pattern of a pair of Archimedian spirals, each wrapped about
five full turns around a common axis . (See Figure 18. The tight coiling spiral is attributed to the short-
ranged immediate neighbor interactions of microtubules. (Roth and Pihlaja, 77). As pointed out by Stevens
(74), the Archimedian is displayed by the primitive sea slug Dictyodora, which evolved into a creature
resembling a corkscrew. In this instance the spiral has been stretched out along its axis. Paleontologists
explain that the creature's evolution in a uniformly wound spiral assured the most thorough foraging of well
defined areas, the distant ancestor of the Dictyodora, it seems, was not in coiled form, and use to wander

~ -

around in haphazard manner. The two processes are rather evocative of the undersea search for fragments of
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Figure 17. The Hyperbolic Spiral. Figure 18. The cross section of axonome of the
heliozoan, x110,000. (Roth and Pihlaja, 77)

The linear dependence of the radius on the angle for the Archimedian spiral can be characterized by

r = a 6+ b, expressed in polar coordinates, with a and b constants.
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The most significant of the spirals, the logarithmic, is described by the expression (in polar

coordinates)
r= roeﬂe 1)

where r, and B are constants. The logarithmic spiral finds its most dramatic example in the shell of the
chambered nautilus. (Recall Figure 15.) Called a living fossil' because of its existence as far back as 200
million years ago, it has been found to be anything but an inert creature, having evolved continuously and
rapidly during its existence. The creature inhabiting its domain, the shell, extends and enlarges it while
forming a continuous rolled tube. As Stevens (74) points out, the difference in growth in the successive
chambers automatically causes the coiling to take place, and that no gene need to remember or plan the final
shape of the shell. Rather, it needs only to facilitate a difference in growth between inner and outer surfaces

of the shell.

Figure 19. Galaxy MS1 . "Whirlpool’ Figure 20. Superimposition of elliptical orbits
giving rise to spiral patterns.

Logarithmic spirals are again encountered in spiral galaxies. In Figure 19 is seen the galaxy M51,
otherwise known as the 'Whirlpool Galaxy'. A pair of spirals are clearly identifiable. In Figure 20 the model
by Kalnijs (Kaufmann 79) for the formation of spiral galaxies is seem in a pair of schematic pictures which
serve to illuminate the conditions for the birth of spiral galaxies. According to the work of Kalnijs, the

initially independent concentric orbits of stars are forced into an overall correlated pattern by spiral density
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waves, presumably initiated by perturbations. The energy fueling the density waves is thought to be
generated deep within the central regions of the galaxy. The latter conjecture is not entirely well understood,
Just as questions regarding whether, (or why not?), the arms of a spiral galaxy disappear by becoming
wrapped up, as one would expect from the differential rotation in the body of the galaxy.

In this rather far ranging discussion on spirals in nature, an area which deserves special attention is
the one of spirals in plants. The arrangements of petals on flowers, of leaves on stems and of branches on
trees comprise an area of botany known as 'phyllotaxis', where one has long recognized the curious
appearance of certain numbers such as 2, 3, 5, 8, etc. (or Fibonacci numbers). The intervals between the
thorns on a rosebush, the intervals (measured in arcs) between branches in the poplar tree, and those in the
delicate network of veins in the leaves of the hardy and rigorous ivy plant are disparate examples of plants
which utilize these numbers. While the proportions enhance the beauty of the plant, the geometry is found to
be functional--enabling the plant to obtain for its parts maximum exposure to the sun, or maximum nutrients
for its cells, etc. The Fibonacci numbers will be discussed in Section IV. Meanwhile, the remainder of this

section will be devoted to examining spiral phyllotaxis.

Spiral Phyllotaxis

Stevens (74), who investigated numerous plant patterns, ranging from branches of trees to delicate
petals of the most ephemeral flower, describes the cross section of the celery just above the meristem (the
conical mound of solid tissue at the base of the plant). The stalks of the celery are packed together closely,
creating a swirling pattern. A cursory glance reveals a pair of clockwise spiral patterns, countered by one
counterclockwise spiral. A closer scrutiny, however, reveals a more general recipe: When leaf bases develop
in succession around the stem apex. they fit between each other in a manner which composes a helical pattern
with each stalk riding above the older member of a pair of stalks in the preceding whorl; and variations of the
helical pattern appear with stalks of one whorl interpenetrating and making contact with stalks of the previous
whorls.

If one examines the helix of thoms of a young hawthorn tree, one finds in two full circles around the

stem a total of five thorns, an arrangement characterized by 2/5. Apple, oak, and apricot have the same 2/5
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pattern of phyllotaxis. As for sedges, beech, and hazel, a phyllotaxis of 1/3 is found: for plantain, popular,
and pear, 3/8; for leeks, willow, and almonds, 5/13. These all exhibit helical spirals.

When the helix is compressed into a plane, compound spirals, such as in the celery's phyllotaxis can
appear. Other compound spirals are the pineapple, 8/13; daisies display clockwise to counterclockwise spirals
of 21/34. Sunflowers, depending on their size, can have phyllotaxis of 21/34, 55/89 or, in the case of a giant
sunflower, 144/233. In each instance, the numbers in the numerator and those in the denominator are
consecutive terms in the Fibonnacci series.

The reason for the occurrence of the Fibonnacci numbers in such a diversity of plants turns out to be a
necessary consequence of the growth pattern inherent in all of them. This is demonstrated by an analysis
offered by Stevens, who begins by plotting the tips of a bunch of celery stalks. Through the points it is
possible to draw a continuous logarithmic spiral. The circular arc between any two consecutive points is
found in a precise measurement to be 137° 30'28" (=137.5077° ). This value, compared with a full circular
turn of 360° is

137.5077° = 0.381 966,
360°

a value equal to the square of the inverse of 1.618 034. Thus, the spiral's relation to the Golden Mean
emerges. More significantly, Stevens draws all the possible smooth spirals through these points, both
clockwise and counterclockwise. What issues is quite dramatic: Compound spirals with only phyllotaxis of
12, 2/3, 3/5. 5/8, 8/13, 13/21. The array of points not only generates all Fibonacci fractions, it generates only
Fibonacci fractions.

One must, however, consider these patterns in the proper perspective. The plant is no more enamored
of the Golden Mean than it engages in mathematical computation before sprouting a stalk. Rather, it puts the
stalks where they have the most room. where they can make the most of the nutrients and the sunlight
available to the plant. As Steven's observes, "All the beauty and all the mathematics are the natural by-

products of a simple system of growth interacting with its spatial environment."
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III. THE FIBONACCI SERIES AND THE GOLDEN MEAN

Leonardo Fibonacci in his book Liber Abacis (AD 1202), introduced a pair of seminal thesis: The
first was meant to elucidate the merits of the decimal system' ; the second, to discuss the propagation of a pair
of rabbits left in an enclosure. It is the latter which gives rise to the series which bears his name, as well as to
the irrational number 1.618... known variously as the 'golden mean', the 'golden section', the 'golden ratio', and
hereafter denoted by ¢.

In Fibonacci's problem of the rabbits, the rules are spelled out as follows: (i) A mature pair of rabbits
can give rise to one new pair per month; (ii) The offspring will have to mature for two months before they can
begin to reproduce themselves; and (iii) No new rabbits can be introduced from outside, and no rabbits can
leave the enclosure. In order to visualize the propagation of the rabbit population we introduce the symbols "

Y ", for a mature pair capable of reproducing; Yoa pair which is only a month old and not capable of
reproducing, and finally, " | ", a brand new pair of offspring. The very first pair of rabbits in the series is an

immature pair. The numbers of pairs in successive months can be seen in the following table.

Month Number of Pairs
Ist | 1
2nd 3 1
3rd Y 2
4th i 3
5th (AR 5
6th IARR AR AR 8
7th SRR RN R A 13

For example, in the 3rd month there should be two pairs of rabbits: the original pair (Y), now fully matured,

plus one new pair (|). (Of course, with one ear, the rabbits cannot reproduce--as it is all in the ears!).

" The Arabs had brought the decimal system from India around AD 750. However, it was not until the Thirteenth
Century. in large pant with Fibonacci's effons, that the system began to take hold in Evrope. The symbols known as
Arabic numerals, 0, 1,2, 3, ..., were adaptated by Fibonacci from the symbols used by the Arabs, *, 1, F ...
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The formal Fibonacci Series has as its basis the three statements:

uj,u3,u3.. Uy (2)

Up =Up.] +Up2 3)

uj=w =1, 4
withn=1, 2, 3, ...

Thus 1,1, 2,3, 5,8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, ... Defining Rp= u p4]/up , one finds for R] ,
Rz ,R3, ...
1,2, 1.5, 1.67, 1.60, 1.63, 1.615, ...
converging in the limit:
lim Rp =1+ V5 )
n— oo 2
approximately, 1.618 034. A pair of intriguing features is that the square of ¢ is 2.618 034..., and the inverse,

0.618 034 ...

The terms of the series can be computed with the recursion relation (3). Moreover, it can be shown

(see Appendix B), that the nth term can be computed directly from

up=(1.618034..)" -(-0.618 034..)1"
A (6)

In the following section some of the geometric manifestations of the Fibonacci Series will be reviewed.

Geometric Constructions Associated with the Golden Section

Starting with the square (ABCD) with sides of unit length, one can construct the 'golden rectangle'
quite simply by bisecting the square, then by using the diagonal MC as the radius of an arc CF (Figure 21).
Next, one extends AD horizontally to intersect the arc CF, draws a perpendicular at this intersection, and
finally extends BC to complete the rectangle. Since DC has a length of unity, and MD of 0.5, the
Pythagorean Theorem yields MC as v/1.25 or approximately 1.118 034. Adding AM =0.5 to MF = MC, one

immediately arrives at 1.618 034. The rectangle ABEF is then the Golden Rectangle.



19

A M D F|
|
|
| /
) /
' ;
B N. C‘ 4
Figure 21. Construction Figure 22, 'Whirling Squares' and the
of the Golden Rectangle. Logarithmic Spiral.

Moreover, DF = MF - MD = 1.118 034 - 0.5 = 0.618 034. The ratio FE/DF is equal to 1/0.618 034 =
1.618 034, which renders the rectangle DCEF a golden rectangle also. Within DCEF apportioning off the
square DFGH creates another golden rectangle yet in HGEC, Figure 22. The process can be repeated ad
infinitum, each time creating a square plus a new golden rectangle with an extant golden rectangle. Finally, if
one connects the centers of the squares, with a continuous curve, one obtains the logarithmic spiral, and the
apt description 'whirling squares'.

In Figure 23 is plotted the logarithmic spiral represented by

r=roexp [-(In ¢/7/2)0]

which is just equation (1) with f =-In ¢/ (t/2). The intersections of the spiral with the -x, +y and +x axes is
seen to produce two sides of a golden rectangle. In Figure 24 radial lines have been drawn intersecting the
spiral at equal angles. The resulting figure represents a remarkably accurate cross section of the chambered

nautilus, seen earlier in Figure 15.

ty

Figure 23. The logarithmic Figure 24. The logarithmic spiral,
spiral plotted from equation (1), with equiangular partitions.
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Finally, in one last construction (Figure 25) the logarithmic spiral is generated from a 'golden triangie' of

angles 369,720 and 72° . For such a triangle AB/BC = ¢ . Furthermore, the points D. E, F, G. ... used in
generating the spiral all give segments related to the golden mean, AB/BC = BC/CD=CD/DE=DE/EF=..=¢

Figure 25. The 'golden triangle’
generating a logarithmic
spiral and the pentagram.

The triangle itself is significant for its use in certain Renaissance paintings, a point which will be discussed in

the next section. More immediately, the 36° vertex is seen as one prong of a five-point star, the pentagram,
which in turn, yields the pentagon when the points are connected. The latter figure was known as the 'magic
penticle' to the Pythagoreans of Ancient Greece, and later it became a favorite conjuring device for magicians.

In this capacity it endured for centuries.

IV. ART, ARCHITECTURE AND THE 'GOLDEN MEAN'

The Great Pyramid of Cheops

The Egyptian pyramids exhibit a number of intriguing mathematical symmetries which are worthy of
mention. Their very evolution. in fact. is indicative of the builders' preoccupation with geometry.
The first pyramid erected. King Zoser's 'Step Pyramid', was comprised of a set of flat mastabas one

on top of the other and, as such, not a true pyramid. However, the next few pyramids were true pyramids, and

all rising at 430 . A pyramid of four sides and an angle of inclination of 43° will have a perimeter to altitude
ratio of 3n. Finally, the last few pyramids built, (and built no more than two centuries after Zoser's), are the

pyramids in the Valley of Gizeh. These are the Cheops and the Chephron which are virtually the same size

and shape. They have slopes of 520,
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The parameters for the Cheops are well known: 230m (or 500 cubits) on each of four sides and a
height of 146.4 m, (now reduced to 137m by erosion and clandestine quarry activity). For the original
measurements, the base to altitude ratio is 1.57, close to the golden ratio of 1.62. Further, the ratio of the

altitude of a face to one-half the length of the base, AM/OM, is exactly 1.62. A simple calculation shows that

a pyramid rising at 520 will have a base perimeter-to-altitude ratio of exactly 2x; this clearly suggests that
initially a circle was laid out, and its radius was adopted for the altitude. Then the circle was "squared-off,"
forming the base. It is reasonable to assume that the builders' would have found this an appealing proportion,

because of its simplicity. But what is far more intriguing is a computation comparing the areas of facades and

base." The base has an area of 52,900 m 2 . the four sides have a combined area of 85,647 m 2. These fi gures

can be related as follows:

Total surface including the base ~ Total surface excluding the base —| ¢ 18,
Total surface excluding the base Area of the base

which is a simple restatement of the Law of the Divine Proportion.
The unexplained question here reduces to one of ‘chicken and egg.' Any pyramid in which the
altitude equals the perimeter/2r . will give rise to a pyramid in which surface areas satisfy the Law of the

Golden Section, and conversely, any pyramid shape which satisfies the Law of the Golden Section will have

to rise at 520, and consequently possess a perimeter to altitude ratio of 2. But which of these motivated the

Egyptian architect’s choice for the desi en?

Figure 26. The original parameters of the
Pyramid of Cheops had BC=CD=DE=FEB=23(m.
AO=140 m, AM=186.2m

" This last relationship was first recognized by Johannes Kepler (1571-1630), who expressed his passion in the words:
“Geometry has two great treasures; one is the theorem of Pythagoras: the other, the division of a line into extreme and
mean ratio. The first we may compare 10 a measure of gold, the second we may name a precious jewel."
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The Parthenon

Then, twenty-five centuries ago that most magnificent of all ‘extrovert buildings"--the Parthenon--was
also built with its facade displaying a length to width ratio of 1.618. The builders of the Parthenon undertook
measures to eliminate unfavorable optical illusions by introducing a number of useful artifices. For example,
a perfectly horizontal line would normally appear to sag in the middle; vertical parallel columns would appear
to diverge at their tops; columns which are cylindrical would appear concave in the middle. In order to
counter these effects, the Parthenon was build on a convex base of 5.7 km radius of curvature; the fluted
columns, in order to avoid a splayed appearance, were sighted to converge at a point about 2.4 km high.
Finally, the midsections of the columns incorporated a slight bulge, ‘entasis', negating the optical illusion in
the other direction. Then there is the magnificent statuary (now residing in the British Museum as the El gin
Marbles), and the majestic perch atop the Acropolis. It is the conflux of all of this along with the unassailable
proportions which renders the edifice the unchallenged epitome of Classical Greek architecture--a victory for

the art and science of the period.

Figure 27. The Parthenon inscribed in the 'golden rectangle’ and seen with the 'distortions' built in order to eliminate
unpleasant optical illusions, such as sagging appearance in the middle of the base, or a splayed appearance of the
columns.

In concluding this discussion on architecture, let us revisit a topic developed in Section I on
polyhedra. It is possible to proceed from one type of polyhedron to another. For example, the twelve vertices
of icosahedron lie on the surfaces of a cube; the eight vertices of a cube are also the vertices of a tetrahedron,
etc. In the icosahedron the twelve vertices also happen to be the vertices of three golden rectangles, with their
planes mutually perpendicular. This is all well and good, but so what? The preoccupation with some of these

symmetries left behind a number of timeless monuments: One is the most significant of all Byzantine

buildings, the Hagia Sophia in Istanbul, which displays a structure of interlocking polyhedra in the design.



23

Another is Kepler's well known bid to deduce the laws of planetary motion using a family of polyhedra,
alternating with concentric spheres for his model (Fi g.28). The first of these is a legacy of man's supreme

artistic creativity: the second, his scientific.

Figure 28. Kepler envisioned the orbits of planets to lie on the surfaces of six concentric spheres
separated by regular polyhedra.

GRAPHIC COMPOSITION AND THE GOLDEN MEAN

The use of the golden mean has not been restricted to architecture. To the ancient Greeks it was
something to be incorporated into a variety of objects, ranging from vases to eating utensils, from statuary to
paintings. To the sculptors of Classical Greece and Rome. certain proportions were recognized as ideal for the
human anatomy, among them the ratio of the hei ght of person to the height of one’s navel as that ubiquitorus ¢.
Again, starting from the Renaissance onward. and especially in graphic art, it has been in composition. in the
construction of lines of perspective, in definin £ of the most salient areas of the canvas, as well as in establishing
proportions that the stratagem has found use. In Fi gure 29, is seen the painting the Spiridon Leda, attributed to

Leonardo da Vinci, where the ratio of the hei ght to the height of the navel is very close to ¢. This can be
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effectively dramatized by inscribing the subject of the painting in a golden re d constructing a square in

the lower portion of the rectangle. The upper edge of the square is then seen ifo pass thapught the navel.'

e St s

Figure 29. The Spiridon Leda by Leonardo da Vinet, Figure 30. The Mona Lisa, ¢. 1503. The subject has been
The ratio of the height of the subject. the Leda, to the organized within an isosceles triangle of angles 36° , 720
height of the navel is seen to be veny close to ¢ and 72 | The ‘fleshy part,’ inscribed in a golden rectangle,

has the chin resting on the bottom edge of a square

Leonardo da Vinci. in his immotal painting of the Mona Lisa used an isosceles triangle with the golden
proportions to organize the Mona Lisa. placing his subject's hypnotizing face near the upper vertex (Fig. 30).
Moreover, when one inscribes the fleshy part of the painting in a golden rectangle and delineates a square in the
upper portion of the rectangle. the chin is tound to rest on the lower edge of the square, assuring that magical
ratio ¢. Indeed. this appears to be the technique Leonardo used in three other portraits -- those Ginevra di

Benci, the Lady with the Ermine, and La Belle Ferronier, seen in Figures 31, 32, and 33, respectively.

" The hypothesis of ¢, being the ratio of one’s height 1o the height of one’s navel was put to test recently with a small group
of university students. in an exercisic in taking measurements and comptuting averages and standard deviations, For the
results, see Appendix A.

+* In 1509 Leonardo illustrated the book De Divina Proportione {or his friend Luca Pacioli.
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Figure 31. Ponrait of Ginevra di Benci by Leonardo. Figure 32. The Lady with the Ermine by Leonardo.
A center piece of the National Gallery of Art in Washington, Krakow, Poland. As in several other portraits by the
the painting represents the only Leonardo work to be found Renaissance master, the ‘fleshy part,” when inscribed
the United States. in a golden rectangle, has the chin resting on the

bottom edge of a square

Leonardo’s supreme aesthetic intuition aside, just the fact that he helped to illustrate a book on the
golden section by his friend Pacioli™ suggests that in most likelihood he consciously imbued his own artwork
with this formal construct also. Thus the great painting may have been a fruit of what Leonardo liked
to call, 'his geometrical recreation.' In another painting. Saint Jerome and the Lion, ' (Fig. 34), Leonardo has
his subject kneeling on one knee, and a position so precisely inscribable in a golden rectangle that it becomes

difficult to attribute to merely an inadvertent exercise in composition.



Figure 33. La Belle Ferroniere, a portrait by l.conardo, Figure 34. St. Jerome and the Lion,
hanging in the Louvre, Paris, by Leonardo.

In the Middle Ages. the circle had been regarded as a symbol for ‘the divine' or for heaven, (as it was
for centuries by Chinese artists). The reason for this is perhaps that the circle has no beginning and no end. The

earth, represented by a square with its sharply defined features, was symbolically subordinated to heaven, by
having the circle circumscribe the square. The square. in turn, gave rise to isosceles triangles of angle 90 ©,

45 ©and 45° . By the time of the Renaissance, the earth rose to greater prominence, but as vestiges of the
older system, the triangle with a circular boundary still found some use. In the circular painting of the Holy
Family by Michelangelo, and again. in the circular painting The Madonna of the Chair by Rafael, the
compositions utilize these geometric figures. In the Michelangelo painting, a pair of interlocking triangles
defines the horizon line (by way of the lower side of one triangle), and legs of the Virgin, by way of the lower
side of the other triangle. The strong diagonal lines in the painting coincide with the co-linear sides of the

two triangles. At the upper vertex. one finds the cluster of heads of the Infant Jesus, Joseph and Mary.
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Le Corbusier, the Twentieth Century architect, felt that human life was comforted by mathematics and
that the design of buildings (and even machines) should reflect the proportions of the human body. He imposed
this principle on the exteriors of buildings, and on their interiors. Referring to Figures 21 and 22, the vertical and
horizontal lines become virtually the full compliment of lines on the facade of one of Le Corbusier's buildings, a
villa outside Paris (Figure 35). There is the vertical golden rectangle delineating the unit on the right: the other,
on the lower right hand comner, representing a landing to which lead a set of stairs. Le Corbusier referred to his
design technique as ‘the modular system of harmonious but unequal proportions.' By any other name, itisa

revival of the tradition exemplified in The Apollo Belvedere statue of two millennia past.
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) e | Figure 35. A sketch of le Corbusier's design
for a villa in the outskirts of Paris. The facade
1 in the sketch has been reflected right-to-left in
R, iy il 4 ) order to show the similarities of the design with
addladles = ared i that of Figure 22.

Finally, in the two disparate schools of art, in 19th Century French Impressionism, and then in 20th
Century 'Cubism’ the technique of partitioning the canvas into interlocking rectangles of the golden section
proportions, and delineating their associated squares is to be found. In the former school, the best proponent
is George Seurat using the type of dots--Pointilism--in his painting called The Parade and again in The
Circus; in the latter, Piet Mondrian in his work Linear Abstractons.

In painting a scene or a portrait, the representational artist has some freedom in raising or lowering
branches, in dilating or deleting shrubbery, or even in displacing trees, but rarely the freedom in redesigning
the building or the person. However, lines of perspective can be aligned with some of the diagonals within
the component parts of the golden section, so that the eyes of the beholder are carried inexorably to the focal
points. Inspired by the enhanced frequency with which some of the Master's have selected the focal points of
their paintings, a prominent area can be identified as the one formed by the intersections of the diagonals of
the golden rectangle and the diagonals of the square within the golden rectangle used in generating it (see

Figures 36 and 37).
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Figure 36. The Golden Rectangle and lines Figure 37. The Golden Rectangle and lines

of perspective. of perspective used in Figures 38 and 39.

The first is especially useful in the composition of portraits, the second, for street scenes. In Figures
38 and 39 are reproduced a pair of drawings (Atalay 72, 74). The first depicts 'Church Lane' in the town
of Ledbury, England, and was composed utilizing the scheme of Figure 37. The second picture depicts

'The Slave Quarters' in Thomas Jefferson's Monticello. The compositions are very similar; the former,
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Figure 38. Church Lane, Ledbury. (Atalay 74) Figure 39. Slave Quarters, Monticello (Atalay 72)



29

however, possesses bilateral symmetry, which the latter does not. The utilization of the golden section with
its lacework of diagonals reflects the artist's belief that the technique will do justice to the scene depicted and
to the abstract requirements of art -- in short, that the most salient features of the scene will be displayed to

their best advantage.

The Confluence of Art and Science

In the physical and mathematical sciences the recognition of symmetries in nature plays a central role
in seeking new laws. The physicist observes symmetries in physical laws; however, he is often more
interested in partial or incomplete symmetries than in perfect symmetries--because it is in imperfect
symmetries that one can look for a deeper story, a more fundamental or profound insight into the laws of
nature. Just as in art, where an off-centered location of the focal points makes the picture more intriguing
than a centered location would make it. (Recall Figures 38 and 39).

An unfortunate banality in philosophy ascribes to science the exclusive process of analysis, and to art,
the exclusive process of synthesis. The scientist, this platitude explains, takes apart his subject: the artist, puts
its together. As Bronowski (73) brings this misconception to fore, in reality the scientist engages in both
processes, as does the artist. For each, imagination begins with a very close scrutiny and analysis of nature,
and ends in synthesis, putting together, "...form by which the creative mind transcends the bare limits, the
bare skeleton that nature provides." For the model of science, Bronowski offers sculpture for the model of
science. The sculptor from Phidias onward, imagined the existence of his statue in the rough hewn block, the
statue beckoning to be released, to be discovered. In Michelangelo's words,

When that which is divine in us doth try

To shape a face, both brain and hand unite

To give, from a mere model frail and slight,

Life to the stone by An's free energy.

The best artists hath us thought to show

Which the rough stone in its superfluous spell

Is all the hand that serves the brain can do.
Likewise, the scientist operates as if physical laws already exist, in unique form, and only need to be
discovered, or to be extricated from nature. But in reality, the physical laws no more exist in unequivocal

manner than the statue in that rough block. In the hands of different sculptors the block is destined to yield

different forms. And in the hands of different scientists the laws are destined to emerge in different form,
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although ultimately perhaps susceptible to a demonstration of equivalence. Depending on how exactly the
questions are asked, the results can appear differently, but correctly. Physics abounds in examples, but
Schrodinger's wave mechanics and Heisenberg's matrix mechanics, born a year apart, spring to mind
immediately, their equivalence being ultimately demonstrated in the synthesis by P. A. M. Dirac.

John Wheeler's allegorical game of Twenty Questions (Wheeler 79) serves well to illustrate the point.
In a game played in Copenhagen, all of the players who had gone before Wheeler had succeeded in guessing,
in a finite amount of time, the word or subject withheld from them. When it was Wheeler's turn, not only did
the other contestants seem to take an inordinate amount of time to choose a word for him, the game itself
seemed to proceed at an unduly slow pace. Each time Wheeler asked a question, the other contestants would
seem just as perplexed, until one of them would break the deadlock and say, 'Yes,' or 'No.' Nearing the end of
his allotted twenty questions, Wheeler suddenly had a brainstorm, as he blurted out, 'It's a cloud!" Again, the
others appeared confused and tentative, until, finally one of them jumped up and declared, 'Yes, he is right.'
The other players came around one by one to agree that Wheeler had deduced the word correctly. When
Wheeler inquired, 'What is going on? Why did you take so long in answering my questions?, they explained
that for him they had not selected a word at all. Rather, they were playing along with him. The answer to his
first question, whatever the question, was to be 'Yes.' After that, however, the players were on their own.
Anyone who was not consistent with one of the earlier answers would have to leave the game. Thus,
depending on how the questions were asked, Wheeler could have gleaned different, but correct answers. In
this instance, the correct answer had been a cloud.

This may be the way scientific inquiry is carried out. One would hope that by studying physics on
earth, one would pass a physics test on a planet of the star Alpha Draconis. However, the desi gner of the test,
the taker of the test, and the grader will all have to show uncommon ingenuity and resourcefulness and
understanding in seeking common bases for the ‘laws’ as they are deduced on each planet.

Like the artist, the physicist is a lover of nature. Just as the artist/sculptor is restricted by his
imagination and his facility with his chisel or brush. the physicist is restricted only by his imagination and his
facility with his mathematics. The artist is more interested in the whole of his composition than its very fine
details. and the scientist is more interested in the generality of nature's laws than in its particulars.

However, it is from scrutiny of a very small section of the Universe, the earth, that he tries to explain the

whole. A ‘beautiful law' of nature, one whose fundamental symmetries have been deciphered, one that is



31

simple and yet general, evokes the image of an ornate tapestry, and in Feynman's words, "Nature uses only
the longest threads to weave its tapestry, and each little fragment reveals the beauty of the whole thing."
(Feynman 64)

The word 'Renaissance’, or "Rinascimento’ in Italian, (as introduced by Vasari, 65), literally means
‘rebirth,’ Vasari wrote of the Classical Period of Greece as representing the birth of art. Then in the Sixteenth
Century, he explained, a great artistic period flowered again, culminating in a crescendo -- the High
Renaissance, whose overwhelming stars were Leonardo and Michelangelo, but included luminaries such as
Rafael, Titian, etc.

In rough analogy it is possible to identify the Seventeenth Century of Galileo and Newton with the
birth of physics, and then the first thirty years of the Twentieth Century with its rebirth. The latter period,
which was ushered in by Planck and Einstein, moreover, exhibited its own climactic High Renaissance. In
the remarkably short span of about three years, between 1924 and 1927, quantum mechanics took shape in the
hands of deBroglie, Schridinger, Heisenberg, Born and Dirac. The same kind of creativity, talent and
temperament which had characterized the Italian Renaissance sallied forth to produce the physics revolution.
Indeed, the precise confluence of the cultural and political landscape and the availability of an extraordinary
measure of talent seems to represent some of the necessary ingredients for cultural revolutions of this
magnitude.

In dealing with the confluence of art and science, one last type of symmetry operation which should
be mentioned is that of rescaling--of scaling-up or scaling-down. The artist, because of the physical
limitations of his medium, invariably engages in enlarging or contracting of his representation. The physicist
also engages in rescaling, usually in conjuring up models to represent the physical phenomenon being
considered, rather than in the context of rescaling of physical structures. That physical laws are not
symmetric to a change of scale is intuitively obvious to anyone who realizes that the forces which hold
together a solar system, a molecule, an atom, or a nucleus are fundamentally different.

However, in the context of 'model building,' rescaling can be of considerable efficacy. In the case of
the atomic nucleus, it might be useful to picture a glass ball or an infinitely hard sphere, or alternatively a
gaseous ball, an oscillating liquid drop, balls connected by springs, or a football doing end-over-end rotations.
Nature at this microscopic scale in reality behaves like nothing one experiences at the macroscopic level. But

in different processes, one or another of these models mi ght assist in constructing a mathematical framework
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to carry out calculations. Ultimately, it is the quantum mechanical description which serves in the
understanding of the nucleus.

In the understanding of nature at the diametrically opposite end of the scale, at the level of stars and
galaxies, useful models of space and time invariably elicit general relativity. The entire process of model
building, or reducing nature to tangible, everyday pictures, however, is never irrelevant. William Blake,
writing two centuries ago, unwittingly provided a timeless credo for the physicist--and so too for the artist:

To see a world in a grain of sand,

And a heaven in a wild flower.

To hold infinity in the palm of your hand,
And eternity in an hour.

From The Auguries of Innocence
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Appendix A. Ratio of Height to Navel Height in Humans

To sculptors in Classical Greece and Rome there were ideal ratios for various body proportions.
For the ratio of height-to-navel height this value was ¢. The following data and the associated statistical
computation is based on a group of twenty-one university students -- eleven females and ten males --

comprising a laboratory section of a physics class at Mary Washington College in 1990.

Height H (in cm) of 10 Males Navel Height N (in cm) H/N
169.0 102.0 1.657
187.5 1185 1.582
180.0 109.0 1.643
182.0 109.0 1.669
185.0 116.0 1.594
171.0 104.0 1.644
190.5 121.0 1.574
183.0 115.0 1.574
181.0 110.5 1.634
193.5 120.0 1.612

Height H (in cm) of 11 Females Navel Height N (in cm) H/N
163.0 99.0 1.646
169.0 101.0 1.673
180.0 108.0 1.667
161.0 101.5 1.586
164.0 104.0 1.577
162.5 104.5 1.555
160.0 99.0 1.616
170.0 109.0 1.559
165.0 98.0 1.683
164.3 102.5 1.600
168.1 103.5 1.620

Reduction of Data

For the data above the average and standard deviation values follow:
For 10 Male students 1.620 = 0.033
For 11 Famale students 1.616 = (.045
For all 21 students 1.618 + 0.04

For reference, the values of ¢: 1.618 034



Appendix B

The nth term of the Fibonacci Series can be computed from the closed-form expression given in the text as
equation (6). The derivation of this equation follows:

Let ay,y=ap, +an, S0 that a,,9-a5,-a,=0. The characteristic equation ¢p2-¢-1=0, a quadratic, has characteristic

solutions ¢=(1+v5)/2.
an=C1($p)P+Ca(P2)n. 1)
ag=C;(1)0+c(9,)0=1 (2
ay=Cy (1)} +co(p)1=1 3)

From (2') we have ¢)+cy=1. Substituting c=1-c; into (3'), we obtain
c1=(14+v5)/(2v5) and c=(v5-1)/(2V5)

and (1') can then be written

ap=(1V5){[(1+/5)/2)]"*L.[(1-v5)/2)]n+1}
The terms uy, uy, u3 ... in the text above, are related to ay, ay, a,...in this derivation by up,=a,.

Thus
up=(1V5){[(1+V5)/2)]-[(1-V5)/2)]n},

which is just equation (6) in the text.

34
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