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HIDDEN SYMMETRIES IN TOPOLOGY AND HAMILTONIAN PHYSICS
A.T.Fomenko _
(Russia, Moscow State University)

INTRODUCTION

Many problems of modern geometry and topology, mathematical
physics and mechanics are reduced to the analysis of symmetries
of corresponding differential equations. In cases when the group
of symmetries is large, it 1s usually possible to integrate the
differential equations (i.e. to find the solutions of physical
problem) in "direct way". This is the reason why the -problem of
classification of all symmetry groups for dynamical systems is
Jery important. But these symmetries usually are "hidden", and it
is I»xd problem to find the symmetry group for concrete dynamical
system. Recently the remarkable relation of this problem with
topological bifurcation theory was discovered. It turns out that
classification of ‘dynamical systems which have "the maximal
symmetry group" can be given in terms of one-dimensional and
two-dimensional topological objects [11, [21, [31.

In the paper we illustrate this theory by visual material
showing the hidden symnetries of concrete dynamical systems from
classical mechanics.

a c\'ﬂr

1. IMPORTANT EXAMPLE: SYMMETRIES OF CLASSICAL EQUATIONS FOR
THE MOTION OF A RIGID BODY. IN 3-SPACE

The theory of the rigid body motion takes its origin from
the classical works of Lagrange and Euler. The modern theory of
motion of spacecrafts is also based fo a considerable extent on
the Euler-Poisson dynamic equations. Let (1 be the instantaneous
angular velocity of the rigid body, and 7 be the unit vertical
vector in direction of z-axis for the fixed coordinate system in
3-space R (Fig.1). We denote by M the vector of kinetic momenfum
of the body about point 0. Let U be the potential function. Then,
the well-known Euler-Poisson equations can be written in the form

al/at=MxQ+ (8U/07) =1, dy/dt=7xQ.



It was found long ago that the Euler-Poisson equations have
three classical independent Integrals: so called energy integral,
area integral and geometrical integral. Thus, we can restrict the -
dynamical system on the 4-dimensional manifold given as common
level surface of area Integral and geometric integral.
Consequently, for the complete Integration of the equations, it
is sufficient to find one more independent integral. The
existence of this integral means that the system has
2-dimensional Abelian group of symmetries. In some sense
Integrability is equivalent to the "maximal symmetry property".
In the Fig.2 well-known Lagrange top is shown - rotating rigid
body with axial symmetry. - :

The questlon arises: which bodies (integrable or
nonintegrable) are encountered more frequently? The intuitive,
conceptual meaning of the question is clear: every rigld body
(and hence its motion) is defined completely by its shape and
initial conditions (at the beginning of the motion), A priori,
the shape of the body is arbitrary. We call a body. integrable (or
"symmetrical") if its motion is integrable, say in Liouville
sense, and nonintegrable ("non-symmetrical") otherwise. It turns
out that if the shape of the body is chosen "by chance" or
arbitrarily, its motion is "almost certainly" nonintegrable or
random. It 1s clear intuitively that if a rigid body (like an

asteroid or a bolid) has no symmetry, 1its motion looks like a | |

random tumbling in 3-space. On the contrary, the shape of a
rocket or spaceship is specially chosen to be symmetric {o the
highest possible extent to ensure the stability of its flignt.
This 1s due to the fact that, roughly speaking, integrability is
& manifestation of symmetries in the shape of the body, while
nonintegrability is associated with the lack of symmetry. Since
the symmetry of a body is a "rare" phenomenon, while the typical
case of general position 1is the absence of symmetries,
nonintegrability or randomness of the motion of a body is a
typical situation.

What is the behavior of a "typical nonintegrable system" on
4-dimensional phase-space? It was noted above that Integrability
(In the Liouville sense) indicates, among other things, that
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every 3-dimensional constant-energy surface Q defoliates 1into
Liouville's tori and singular fibers. In particular, each integral
irajectory of the general position remains all the time on "its -
own" 2-dimensional . torus. On the contrary, if a system is
nonintegrable, almost all integral trajectories in the typical
case are found to move randomly over the 3-Gimensional surface’Q,
each of them filling Q densely everywhere (such motions are
sometimes called ergodic motions).

Let us now consider a "set of all Hamiltonian systems",
actually the space of all smooth functions H (since the
Hamiltonian dynamical system is specified by its Hamiltonian H).
This space 1s infinite-dimensional. Which systems (integrable or
nonintegrable, i.e. ‘“symmetrical” or "nonsymmetrical") are
encountered more frequently? It is clear Intuitively that an
integrable systems is a rare event 1In the myriad of all
mathematically conceivable systems. At the same time, integrable
cases are encountered more or less frequently in mathematical
physics. It can be probably explained by the fact that the real
Physical Hamiltonians appear in the real world as they become
"quite symmetric" for certain values of their parameters. At any
rate, classical theoretical mechanics 1s based to a considerable
extent on the ideas about a "certain harmony of the World"
propounded in the works by Kepler, Copernicus, and many other
outstanding scientists of Middle Ages. The concept of "harmony" _
in these works is based on the concept of symmetry. The vast body
of experimental data accumulated by scientists over the last few
centuries confirms fo a certain extent the hypothesis according
to which "symmetry reigns the world",

A question arises: is it possible to describe or classify
integrable ("symmetrical") systems and isolate among them a
"physical zone" comprising the systems which are encountered in
real physics? The problem is very complicated, but in the last
few years the new topological approach was discovered which
allows to give the answer for "non-degenerate" (in some natural
sense) Hamiltonian systems with two degrees of freedom.

One of the most vivid examples of physical "symmetrical®
systems (i.e. integrable in Liouville sense) is associated with



equations of motion of a heavy rigid body. We shall take the
potential function U describing the ordinary gravitational field
(gravity force field). The force of gravity is directed downwards -
along the vertical .axis T (Fig.3). It twns out that the heavy
rigid body having such a potential admits few important
cases of integrability (i.e. "symmetry").

1) Euler's integrable ("symmetrical") case (was discovered
in 1750). If the rigid body is fixed at its center of mass (viz.
at point 0, see Fig.4), i.e. p=0 (see p=(ryiTpsT3) on the Fig.3),
such a Hamiltonian has another (additional) integral, so called
Euler integral.

2) Lagrange's integrable case (was- discovered in 1778). This
case 1s sometimes called the symmetric top, or Lagrange's top.
The symmetry of the system ig manifested in the fact that the
ellipsoid of inertia (with semiaxes A,B,C) is an ellipsoid of
revolution (with two equal semiaxes) at point 0 (i.e., the fixed
point about which the body rotates), and the center of gravity of
the body lies on the rotational axis (Fig.2). A spinning top is a
good model of Lagrange's top. The additional integral has a
simple geometrical meaning: the component of the instantaneous
angular velocity along the dynamic symmetry axis is conserved,
Therefore, the symmeiry of the system in this case ig manifested
clearly. '

3) Kowalevskaya Integrable case (was discovered in 1889).
Here the integrable Hamiltonian H is defined by the following
conditions: A=B=2C and ry=0. -This case 1s more complicated to the
previous cases since the second Integral turned out to be not
quadratic but fourth-degree polynomial. The symmetry of this
Integrable Hamiltonian is latent and assoclated with deep-rooted
algebraic and geometrical properties of the Euler-Poisson
equations.

2. CLASSIFICATION OF INTEGRABLE ("SYMMETRICAL") NONDEGENERATE
HAMILTONIAN SYSTEMS WITH TWO DEGREES OF FREEDOM

1) ILet wus consider two Integrable  ("symmetrical")
Hamiltonian systems of "general position". Are they orbitally



equivalent? :
2) Classify all integrable systems to within the orbital

equivalence. Does a topological invariant "responsible" for this
classification exist?

3) Determine topological obstacles to integrability.

4) Describe all integrable systems of "low complexity".

5) Describe the "physical zome" in the table of all
"mathematically existing" integrable systems.

It furns out that. in a certain exact sense, all these
problems can be solved. This is one of the results of the theory
developed in the series of works by A.V.Bolsinov, A.T.Fomenko,
H.Zieschang, S.V.Matveev, A.V.Brailov, - A.A.Oschemkov, -T.2.Nguen,
E.N.Selivanova, L.S.Polyakova, B.S.Kruglikov, 0.E.Orel,
V.S.Matveev, P.Topalov, V.V.Kalashnikov (Junior), H.Dullin,
S.Takahashi and others. See [11, [2], [3]. :

The classification 1s given in the terms of specific
topological objects, which are called "atoms" and "molecules". We
will describe here .only these interesting objects and do not
present the general classification theory. In turns out, that
"atoms" and "molecules" became useful in many other geometrical
problems and  they describe  the  important topological
bifurcations.

3. CODING OF MORSE FUNCTIONS ON TWO-SURFACES
BY ATOMS AND MOLECULES

3.1. SIMPLE AND COMPLICATED MORSE FUNCTIONS

Let us consider a smooth function I(x) on a smooth
2-dimensional surface (2-manifold) M. Iet us recall that the
function f(x) 1s called Morse function, 1f its critical points
are nondegenerate. The local structure of the level curves near
the non-degenerate points is presented in the Fig.5. It is known
that Morse functions are dense everywhere in the space of all
smooth functions on a smooth manifold.

In other words, any smooth function can be converted into a
- Morse function as a result of even the slightest perturbation. In



this case, complicated degenerate critical points are scattered
to form a union of a certain number of the Morse-type (i.e.,
nondegenerate) singularities.

Henceforth, we . shall denote by £7'(r) the complete inverse
Image (= preimage) of the value r of the function f. We shall
denote by a the regular values of the function, i.e., the values
Whose preimage (inverse image) do not have a single critical
points. In this case, £ '(a) is always a smooth curve in M.

We shall denote by ¢ the critical values of the function,
l.e., such values whose inverse image has at least one critical
point.

Further, we can use the slightest perturbation - to ensure
that every critical level ¢ (i.e., the set of points x for which
f(x)=c) contains exactly one critical point. In other words,
critical points falling on the same level can be moved to closely
spaced levels (see Fig.6). Such Morse functions are sometimes
called simple. The Morse functions which have several critical
points (more that one) on at lest one critical level, we will
call complicated.

Let us discuss the notions of simple and complicated Morse
functions. As we recall above, each complicated Morse function
can be deformed (by small perturbations) in a simple Morse
functions. Of course, this fact is used in many applications and
theoretical questions. From the other hand, there are important
slfuations, when you canmot perturbate the complicated Morse
function to transform it into a simple one. The first example is
the theory of Morse functions with symmetries. If you are forced
to investigate the properties of the Morse function (on some
manifold) which is invariant under the action of some discrete
group (group of symmetries), then, generally speaking,  you
cammot deform this function in a simple Morse function if you
Went to work in the same class of symmetrical Morse functions. We
Will discuss this problem in the next section. Now we will
analyze the case of a simple Morse function. We will consider for
slmplicity the case of a Morse functions on a two-dimensional
surfaces,



3.2. SIMPLE ATOMS AND CLASSICAL REEB GRAPH AS THE CODE OF A
SIMPLE FUNCTION

a) REEB GRAPH

What is  the structure of level curves of a simple Morse
function defined -on a two-dimensional surface M? Let us first
consider an orientable surface, '

If a is a regular value of the function, the relevant level
curve consists of a few nonintersecting smooth circles (Fig.7).
Let us replace each connected component of the total preimage
() by a single point. In the case when the value r=a is
regular, each point will represent some smooth circle (lying
Inside the two-surface M). In the case when r=c is singular, the
point can represent the single smooth circle or some complicated
curve with singularities (which is one 0of the connected
components of the level curve £’ (r)) (Fig.8).

As a result, we obtain some graph (Fig.8). .This graph 1is
called Reeb graph for the Morse function. It is clear that this
graph can be defined for any smooth function on the manifold M,
1.e. not only for a simple Morse function. See example in Fig.9.
It 1s evident that the Reeb graph allows us to reconstruct the
evolution of the level curves of the function f on M for a simple
Morse function. In this case each immer point on the edge of
Reeb's graph represent some smooth circle and each vertex-point
represent the figure of eight (Fig.8). But in the case of
complicated Morse function the Reeb graph 1is too rough, because
here 1t lost a lot of information about the behavior of the level
curves of a function on the surface. The simple example you can
see In the Fig.9, where two different functions (both are not a
simple functions) have the same Reeb graphs W. For the function
I, (which 1is complicated Morse function) the "saddle vertex" of
the Reeb graph represents the curve with three critical points
(F1g.10). For the function 12 (which 1s even not a Morse
fnction) the "saddle vertex" of the Reeb graph represents the
singular curve with one complicated critical point (Qegenerated),
It is easy to construct two different complicated Morse functions



With the same Reeb graphs (Fig.11).

Thus, the Reeb graph is the nice code only for the case of a
simple Morse function. ILet us discuss its properties in more -
details for this special case.

b) MINIMUM AND MAXIMUM POINTS AND CORRESPONDING MINIMAX ATOM A

Let us consider a nonsingular level curve close 1o the
minimm or the maximm of the function. This curve is
homeomorphic to a circle. If the regular value tends to the
minimax value (= minimum or maximum value), the circle shrinks to
a point (Fig.12). In this case, the two-dimensional disk foliates
into concentric circles with a common center (corresponding to
the minimax value). We shall represent this evolution of level
curves and the rearrangement by using the following conditional,
but quite visual method. Every nonsingular level curve (circle)
will be depicted by a point lying at the level a (Fig.12). Upon a
change in a, this point will move and sweep a segment. At the
moment when the value of the function becomes critical (equal to
¢), the circle will shrink to a point. We shall denote this event
by the letter A with a segment emerging from it. The segment is
directed downwards.

For the minimum, we proceed in exactly the same mamer
(Fig.12). In this case, the segment descends from above and ,
terminates (at the lower end) at A,

We shall also assume that A denotes a disk with a point at
the center, which foliates into concentric circles. We will call
this surface with a boundary the minimax atom.

¢) SADDLE POINT AND CORRESPONDING SADDLE ATOM B
IN ORIENTABLE CASE

If ¢ is the critical saddle-point value, the level curve has
a flgure-eight shape. When a tends to ¢, the two circles come
closer and merge at a point where the level curve is rearranged.
This process is also depicted in Fig.13. By reversing the
direction of motion, we can speak of the inverse process, viz.,



the decomposition of a circle into two circles. The initial
circle 1s "constricted", and then two circles stick together,
after which the figure of eight thus obtained splits into two
circles. Proceeding .in the same way as iIn the case of minimax,
l.e., presenting every regular circle by a point, and tracing
their evolution (during the change in the level), we obtain a
graph shown in Fig.13. This is a "tripod" oriented either
upwards, or downwards. We shall denote the corresponding
rearrangement by B, assuming at the same time that this letter
also describes the pattern depicted in Fig.14, viz., a plane disk
with two holes, which foliates into level curves of the Morse
function. This surface will be called saddle atom B.

We will speak in this case about orientable saddle
transformation (of the levels of a simple Morse function), It is
evident that any simple Morse function on an orientable 2-surface
has only orientable transformations (of its level curves).

d) REEB GRAPH AS MOLECULE FOR A SIMPLE MORSE FUNCTION
IN ORIENTABLE CASE

The notation Introduced by us 1s very convenient, for
example, for solving the following problem. ILet us suppose that a
compact closed 2-surface is defined with a certain simple Morse
function on 1t., Let all the critical points of this function be
known. How can we reconstruct the surface? It runs out to be a
simple problem in orientable case. We must consider all critical
points of the function and the rearrangements corresponding to
them, draw letters A and B on the relevant levels, and then
connect the ends of the edges of these graphs. This leads to a
certain graph W (Fig.15). Then we need to fix the orientation on
all coples of atoms A and B and glue them using the
diffeomorphisms of corresponding boundary circles which preserve
the orientation. As a result we obtain a smooth closed 2-surface
(without boundary if the graph W did not have a free ends). We
will call this graph molecule (which ig constructed from the
atoms A and B).

It 1s clear that if the surface M is orientable, the graph W



defines it unambiguously (up to diffeomorphism). It should be
noted that the graph W is not necessarily plane graph.

It is important that the molecule W is considered as -
abstract graph without any fixed embedding in the Euclidean
3-space.

Thus, we have obtained a reasonable method to code a simple
Morse functions of the orientable smooth 2-surfaces using the
graphs W. | '

It 1s evident, that the Reeb's graph gives a nice code
(model) only in the case of a simple Morse function. If the Morse
function is complicated, then some vertices of a Reeb's graph
correspond to a connected components of a singular level curves
which contain several critical points. Thus, the topology of
these level curves became very complicated and a single
point=vertex of a Reeb's graph does not represent the complexity
of this curve. So, we need in some new notion which can describe
the topology of a level curves with several critical points. This
notion was introduced for the purposes of {opological
classification of integrable Hamiltonian systems [1], (2].

Let us return to a simple Morse function on 2-surface,

Definition 1. Two-dimensional surfaces A and B (with a
boundary) which foliate into circles as shown in Figs.12 and 14,
Will be referred to as atoms. Naturally, the graph W (Fig.15)
Will be called a molecule (since it consists of atoms).

An atom will also be denoted by a letter with a few positive
and negative edges emerging from it (upwards and downwards)
depending on the number of positive and negative boundary circles
of the atom. Let us resume our discussion.

a) Any simple Morse function on an orientable 2-surface M
can be coded by some graph (molecule) consisting of the atoms
(vertices) of two types: A and B. All transformations of level
curves of the function are orientable. _

b) If some graph W without any free ends and consisting of
the atoms of the types A and B is given, you can reconstruct in
unique way (up to diffeomorphism) some compact orientable
c-surface with some simple Morse function on it such that the
corresponding molecule will coincide with a glven graph V.
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¢) If two molecules W and W' are homeomorphic, then
corresponding 2-surfaces M and M' are diffeomorphic,

Thus, the molecule W 1s a reasonable code for the pair -
(M2,1), where M is a surface, f 1s a Morse function. It is clear
that the same 2-surface M can carry different simple Morse
function. Consequently, different molecules W and W' can
represent the same 2-surface (but different Morse functions on
it). '

e) SADDLE ATOMS B AND A* FOR A SIMPLE MORSE FUNCTION
IN NONORIENTABLE CASE

We now reject the hypothesis of the orientability of the
surface M, i.e., go over to the general case., The minimax
rearrangements of the type A have the same construction both in
the orientable and nonorientable cases. The difference appears in
the case of a saddle point. ILet us first recollect how a
saddle-point - type rearrangement (with an index equal to unity)
actually takes place in the orlentable case. It 1is depicted in
Fig.16. A narrow strip. (rectangle) is glued to the pair of
boundary circles (representing the boundary of the manifold:
I(x)<c-e, where € is a small quantity). The gluing is such that
the obtained surface remains orientable. As a result, the
boundary is found to be homeomorphic to a circle. _

Let us now consider the case when a rearrangement takes
place within a nonorientable surface. Some rearrangements (with
an Index 1, i.e., of the saddle-point type) can occur in this
case as for an orientable surface. However, here can appear the
néw rearrangement which 1s made according to a completely
different principle. This rearrangement 1is shown in Fig.17. A
twisted (by 1800) rectangle 1s glued to the same boundary circle
of the surface. As a result, there appears a new Mobius sirip
within the surface f<c+t. Clearly, there remains only one
boundary circle after the rearrangement, Thus, as we go over
through the critical level ¢, a c¢ircle is transformed again into
a circle. Using the symbols iIntroduced by us earlier, 1i.e.
depicting every nonsingular comected level curve (viz., a
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circle) by a point, we must represent the evolution described
above as shown in Fig.17; the edge of the graph with the letter
A¥ at  the middle. This letter denotes conditionally a -
"nonorientable" rearrangement.

Thus, if f is a simple Morse function on a compact closed
surface (which is orientable or nonorientable), we can put it in
correspondence with the graph W having vertices of the type A,
B, or A%,

What are the specific features of the rearrangement of
oircles upon a transition through the critical level in the case
of A%? Figure 18 shows the surface £’ (c+e,c~€), It has the form
of two Mobius strips glued crosswise.

The "minus" sign marks the circle lying on the level c¢-¢
while the "plus" sign shows the circle on the level c+€. The
critical saddle point is at the center.

Let us define a new atom A* corresponding to the
rearrangement In the orientable case, we simply took the strips
P =t (cte, ¢c-€) for atoms A and B. Here we also will. take
the 2-surface PC=I'1 (c+€,¢-€) and will call it atom,

The atom P, 1s called orientable 1f its 2-surface P 1s
orientable, The atom P, 1s called non-orientable if P is
non-orientable.

So, atom B is orientable and atom A* is non-orientable.

The atom A has only one boundary circle, and hence only one
edge emerges Irom the vertex A. Accordingly, two edges emerge
from the vertex A* and three edges from the vertex B.

3.3. EXAMPLES OF SIMPLE MORSE FUNCTIONS ON
NONORIENTABLE SURFACES: PROJECTIVE PLANE AND KLEIN BOTTLE

a) PROJECTIVE PLANE

Let us recall that projective plane RP® can be represented
as 2-surface obtained by gluing of the square according the rule
shown in the Fig.19. We need to 1dentify the edges of the square
In such a way that two copies of the letter a are glued (with
their orientations) and two copies of the letter b also are glued

12



(with identification of the arrows). Another evident model: the
two-dimensional disc with identified opposite points on its
boundary circle. The evident equivalent model: two-sphere with a -
hole with identified. opposite points on the boundary of the hole.

It is easy to see that projective plane can be obtained from
Mobius strip 1f we glue u with 2-disc D® by identification of
their boundary circles, i.e. RP°=u+D?, In. other words, if we
remove 2-disc D° from projective plane RP®, we obtain Mobius
strip y, i.e. RP2-DP=y. |

Let us consider the simple Morse fwnction f which is
determined on projective plane by the set of its level curves
shown in the Fig.20. It is clear that there are many smooth
functions with the same collection of level curves, but among
these functions there are Morse functions and they are simple.
Let us analyze this Morse function in details, Its minimum point
1s marked in the Fig.20 as m, its maximm point is m,_and its
saddle point is S (in the center of the square)., There is a
slightly different representation of this function shown in the
right side of the Fig.20. The critical saddle level curve is
obtained from two diagonals of the square by identification of
their ends marked as P and Q. Let us note that these two points P
and Q are different on the RP° (after gluing of the square's
boundary). Thus, critical saddle level is figure of eight.

Let us consider the following decomposition of projective ,
plane: RP2=D°+A*#D?. Here first D° 1is the neighborhood of the
minimum point m_, the second D? is the neighborhood of the
maximum point m, and A* 1s the tubular neighborhood of the saddle
critical level curve. It follows from the Fig.21 that A* is
homeomorphic to the same surface which was denoted as A* in the
previous section and 1s obtained from the "cross" by
identification of its ends according the rule shown in the
Fig.251.

Finally, this simple Morse function is represented by the
molecule W shown in the Fig.22,

D) KLEIN BOTTLE
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Klein bottle is the 2-surface which is obtained from square
by identification of its edges according the rule shown in the
Fig.23". It 1s easy to see that Klein bottle KI® is obtained from
two Mobius strips by gluing their boundary circles. So, we can
write that KI.2=u+u. We can use this decomposition to .
consiruct the simple Morse function on Klein bottle. This
function is determined (non-uniquely) by its set of level curves
shomn in the Fig.24. Here we have one minimum point m_, one
maximum point m_and two non-degenerate saddle points R and S
Each saddle critical level curve ig homeomorphic to the figure of
eight. Each saddle point correspond to the atom A* and
consequently, the whole Morse function is described by the
molecule

A A—

3.4, COMPLICATED MORSE FUNCTIONS, COMPLICATED ATOMS AND
GENERAL MOLECULES

a) EXAMPLE: FUNCTIONS WITH SYMMETRIES AS COMPLICATED
MORSE FUNCTIONS

Let us consider some smooth manifold M and s Morse function
1(x) on M. Assume that this function ig invariant under the
action of some discrete: group G on M. This means that each
element g of the group G is represented by some diffeomorphism of
the manifold M (we will denote this diffeomorphism by the same
letter giM-——>M), and the function satisfies to the following
condition: f(g(x))=f(x) for every point x from M. In other words,
the function f is constant on every orbit of the group G in X,
The orbit G(x) of the point x is the set of all points in M which
have the form g(x) (where g runs through the whole group G), i.e.
- the Images of the point x wnder the shifts by the
diffeomorphisms g from the group G. Such functions f are called
usually the functions with symmetries (where the group G 1s
called the group of symmetries).

Let us consider the simple example in the Fig.25: the height
function f(x) which is defined on the flat ring (2-surface with



boundary) and has five maxima and five saddle critical points
(so, totally this function has ten critical points). Here the
surface M 1s the ring and the group G is the group g - the -
cyclic Abelian group of the order 5. This group is the group of
orthogonal rotations about the vertical z-axis in Euclidean
3-space, The generator of this group is the rotation on the angle
/5. Such functions appear in many applied problems of modern
geometry and topology. ' '

Let us consider the general Morse function f on M which 1s
Invariant under the action of the group G. Let X, be a critical
point of this function. Then we state that all points g(xo)
(where g runs trough the whole group ) also are the critical
points of the function f (with the same Index). Moreover, the
function f takes in all these points the value equals to the
value I(xo). It follows immediately from the definition of the
Invariant function and from the remark that this function 1is
always constant on the orbit,

Consequently, if the orbit of the critical point X, does not
coincide with the point X, then the critical level £(c), where
¢ = I(x)) contains several critical points (which are the images
of the critical point X,). Thus, such function f is the
complicated Morse function.

Resume. Leét us assume that f(x) is a Morse function on a
smooth manifold M invariant under the action of some discrete
group © and assume that there exists at least one critical point
of f which is not a fixzed point of the action of . Then the
function f is a complicated Morse function.

In the example in the Fig.25 the saddle critical level of
the complicated Morse function contains five critical saddle
points. The critical level curve is obtained by gluing of five
circles (each two heighbouring circles are glued in one point).
The maximal critical level curve consists of five isolated
maximal points. '

It 1s clear that 1f we have the complicated Morse function
which is realized as the function with symmetries (on M), then in
general case we camnot {ransform this function (by a small
perturbation) in a simple Morse function if we want to preserve
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1ts invariance. It 1s clear shown in the Fig.26. We see theN
small perturbation of the initial function f in the function f
which 1s close to f. The critical (singular) level curve of f -
containing the five saddle points 1is shown., The small
perturbation transforms this curve in the union of several
figure-eight curves. It is evident that we }vost the invariance
property of the -function: the new function f is not invariant
under the action of the group Zs'

Thus, 1if we want to investigate the properties of invariant
(symmetrical) Morse functions, we are forced to consider a
complicated Morse functions. We also are forced to introduce in
the theory of coding some new objects which will allow us to
describe the complicated critical level curves with many critical
points (on the same level),

b) COMPLICAIED MORSE FUNCTIONS, COMPLICATED ATOMS AND
COMPLICATED MOLECULES. ORIENTABLE CASE

The constructions described above for the simple Morse
functions can be extended to the complicated Morse functions. The
only (but very important difference) is that the mumber of atoms
increases, and the atoms become more complicated.

Let M be a closed two-dimensional smooth surface (orientable
or nonorientable).

Let f be a Morse function of the general type, for which
there can be several critical ‘points on a critical level,

If ¢ 1s the minimax critical value of the function £, the
rearrangement of a nonsingular level curve (consisting of several
nonintersecting circles) occurs as in the case of a simple Morse
function, i.e., consists of a few type A rearrangements.

Let us first assume that the surface M is
orientable.

Definition 2. We shall call a comnected component of the
2-purface £7'(c-g,c+c) an atom corresponding 1o the critical
value ¢ (there can be a few atoms corresponding to ¢ if they lie
on the same level of the function). We shall denote the atom by
Pg (or Pc). The surface Pois always orientable because the
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surface M 1s supposed to be orientable. The critical points of
the function f lying on P2 are called vertices of the atom. In
the case when the surrace M 1s orientable, these vertices can -
only have a multiplicity of O (the isolated minimax point of the
function), or 4 (the saddle point 1s at the center of the
"cross"; four edges converge to this vertex)

The surface Pz has a boundary consisting of a certain number
of circles. The circles lying at the level c-¢ will be called
negative, while those lying at the level c+c will be referred
to as positive, Their number can be different. A singular level
curve, viz., the connected component of the curve £ '(c) (which
will be denoted by K) is a commected closed curve with
singularities. The singularities of K are exactly the vertices
of the atom. The graph K can be naturally called the skeleton,
or spine of the atom (see example in Fig.2T7).

It should be noted that different atoms may have the same
spine K Therefore, K 1tself does not define the atom uiquely.
The surIace P obviously contracts to its own spine. A spine is
the deformational retract of its atom (i.e., the spine remains
stationary all the time when the atom contracts to it). This
contraction can be carried out along the gradient lines of the .
function f defined on the atom.

Let us describe some properties of atoms. If we omit the
graph K, from the atom, the latter will disintegrate into a union
of a Iew rings. Near every edge of the graph K there is exactly
one positive and exactly one negative circle. The vertices of the
atom, viz., the singular points (vertices) of the graph K, may
only have a multiplicity of 0 or 4. The graph K cannot be a
"pure" circle without vertices since by deiinition it 1s a
singular level curve of the function f passing through critical
points (at least through one). The critical points are just the
vertices of the graph. By the way, we could complete the picture
by including a simple circle (loop without vertices) into 1list of
graphs K by considering the comnected component of a regular
level curve of the function f.

Flgure 27 shows an example of an atom which will be denoted
by D, (the meaning of this notation is not now important for us,
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but it is reasonable to mention that these notations appeared as
a reflection of Hamiltonian physics, where the theory of atoms
and molecules is used, see [1]), This atom D, is a plane surface
(1.e., can be realized in the form of a domain on a plane).
However, not all atoms are plane. Am example of a different atom
1s shown in Fig.28. We can easily construct a Morse function
realizing this atom. Such an atom cannot be embedded into a
plane. However, it can be immersed in the plane by allowing
self-intersections (superpositions).

Clearly, the number of atoms is infinitely large. On the
other hand, they can be easily ordered and classified as their
complexity increases. ILet us describe a useful and graphical
method of depicting atoms. It is known Zfrom topology that any
two-dimensional orientable surface with a boundary can be
Immersed in a two-dimensional sphere. Therefore, any atom can be
visualized as immersed In a sphere. Naturally, we shall not
distinguish between the immersions of an atom which can be
obtained from one -another by a smooth deformation (1sotopy)
within the sphere. Besides, we agree not to distinguish between
Immersions differing from one another in the "loops" shown in
Fig.29. By extruding a point _(which does not lie on the atom)
from the sphere, we can depict the atom immersed in the plane,

The picture of an atom can be simplified still further,
Indeed, we shall define the atom completely (and uniquely) by
specifying only the immersions in the sphere of its graph K . If
the immersion of the graph is specified, 1t is surricient 1o
consider a small tubular neighborhood of this immersion, This
neighborhood is nothing but the atom (2-surface with a boundary).
This idea is illustrated in Fig.29 for the atom C

Conclusion. An atom is the immersion of the graph K, In a
sphere S° (or a plane R if we extrude from sphere a point not
lying on the graph)., Isotopic immersions of the graph and the
immersions differing only in loops are assumed to be identical
(to be more precise, equivalent).

Therefore, while depicting henceforth the atoms P y We shall
consider only their "skeletons" K, immersed in a plane Figure
29 also shows examples of equivalent and nonequivalent
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immersions (in a sphere) of the same graph K,

Thus, the set of all orientable atoms forms an infinitely
long discrete list., We shall define the complexity of an atom as -
the number of its vertices. It should be recalled that the
vertices of atoms can have a multiplicity of 0 (isolated vertex)
or 4 (cross). There exists an algorithm (realized on a computer)
which enumerate  consecutively all atoms in the order of
increasing complexity. We shall present” here only the beginning
of this 1list (see Fig.30), containing atoms of complexity 1, 2,
and 3 (specified by immersions of the graphs K in a 2-sphere),.
In the Fig.31-a and Fig.31-b we represent the same atoms in the
form of 2-surfaces with boundary.

As in the case considered above, we can put a molecule W in
correspondence with a Morse function on the surface M by
comnecting the corresponding atoms by ‘edges. As a result, we
obtain the graph W with atoms as its vertices.

In conclusion let us shown an interesting example of
complicated Morse function on two-dimensional torus. The torug is
obtained from flat square (Fig.32) by gluing its edges according
the rule given by the arrows and letters on the edges. Let us
consider the function f on the torus T° determined (non-uniquely)
by its level curves shown in the Fig.33, This function has two
non-degenerate saddle critical points, one minimum point and one
maximum point. The saddle atom is homeomorphic to the surface
shown in the Fig.33 and is denoted as C (according to our
classification list).

Resume. The atoms represent and classify the different types
of symmetries appearing in the theory of complicated Morse
functions on 2-surfaces. From the other hand, the same atoms
represent and classify the different types on bifurcations
In integrable ("symmetrical") Hamiltonian systems [11, [21 ,I31.

4. TOPOLOGICAL ATOMS AND MOLECULES CLASSIFY THE BIFURCATIONS
AND SYMMETRY TYPES OF INTEGRABLE SYSTEMS

Topological 2-atoms desribed above are represented as
2-dimensional surfaces with boundary, foliated by level curves of
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Morse function. According to definition, 2-atom represents the
bifurcation of level curves of Morse function when the value of
the function crosses the critical value. ILet us consider the -
direct product of 2-atom on the circle. We obtain some
3-dimensional manifold with boundary. We call this product
3-atom. This manifold is foliated by 2-surfaces which are the
direct products of the level curves on the cirle. Almost all of
these 2-surfaces are 2-dimensional tori, But there 1is one
1solated singular fiber which is more complicated that 2-torus.

The first example is shown in the Fig.34, where we take the
direct product of the atom A on the cirle. We obtain the
foliation of 3-dimensional solid torus by concentric 2-tori which
are contracted on the circle,

Second example we obtain by multiplication of the atom B on
the circle (Fig.35). Here two torl are transformed into one torus
after passing trough the critical (singular) level.

More complicated example ise shown in the Fig.36. Here we
consider so called twisted Seifert product of the. atom B on the
circle.

One of the main theorems of the theory claims that all
possible orientable bifurcations of nondegenerate integrable
Hamiltonian systems with two degrees of freedom are classified be
the set of all 3-atoms. In this sense the infinite list of all
3-atoms (or in equivalent way the list of all 2-atoms) represents
the list of all possible orientable "transformations of symmetry"
in integrable systems.
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