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Abstract

"Overlined are general ideas as well as experimental and theoretical efforts leading to pre-
diction of the existence of new structures in disks of spiral galaxies — giant anticyclones.
Recent achievements resulted in discovery of these structures in real galaxies are described
in detail. A crucial point is a new method for restoration of the full vector velocity field
of the galaxy from the map of the line-of-sight velocity. Its efficiency is shown by the
example of the restoration of velocity field of the galaxy NGC 157. Results for this and
some other spiral galaxies are presented which demonstrate the universal existence of
giant anticyclones in galactic disks.

1 Introduction

Purpose of the work is to prove, that observed over the century since their description in
1845 by Lord Rosse, the galactic spiral arms are always accompanied by giant vortices
as different parts of an uniform spiral-vortex structure. While spiral arms are visible
in galactic disks as the regions of increased surface density, the giant vortices are the
features of velocity field of the galaxy, and, as a rule are located between spiral arms in
the regions of reduced surface density. Being rather attractive and dynamical in their
forms, spiral arms decorate a cover of the numerous books on astronomy. But these forms
a little can tell to the observer about the dynamic process which produces the structure.
In contrast, the giant vortices are carriers of a basic dynamic information about a galactic
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disk. First, the centers of vortices are located near a co-rotation circle, where azimuth
rotation velocities of a spiral pattern and disk coincide. The pattern speed of the spiral-
vortex structure being the crucial parameter for different theories of the spiral structure is
a subject of long-standing controversies. Second, disposition of centers of vortices relative
to spiral arms in combination with the form of rotation curve of the disk in a neighborhood
of co-rotation indicate would the mechanism of the structure generation gravitational or
hydrodynamic. It should be noted that making such inference by the form of spiral arms
is impossible.

The statement about existence of new structures in spiral galaxies, giant anticy-
clones, is based on a hypothesis of the Lindblad (1938, 1941, 1042, 1947, 1948) about
a wave nature of galactic spirals. This hypothesis was laying in a base of a set of the
developed theories of spiral structure (Lin and Shu 1964, 1966; Fridman 1978; Lin and
Lau 1979; Fridman and Polyachenko 1984; Bertin et al 1989; Fridman 1990). Numerous
observational confirmations of this hypothesis can be found in the quoted above literature
and references there. The detection of vortex structures is one more confirmation of a
wave nature of galactic spirals.

2 Qualitative picture of formation of anticyclones

Now let us try to understand at a qualitative level, why the velocity field of any density
wave should inevitably contain the giant anticyclones.

In a laboratory an angular velocity of rotation of a disk 0(r) monotonically de-
creases with radius function (Fig. la). The spiral structure, being wave density, rotates
with a constant angular velocity {lph = const. A cross point of the graphs of two functions
Q(r) and Q1 = const corresponds to a co-rotation radius 7e. If now the observer from a
laboratory frame will pass on a rotating disk, and move in radial direction, at the radius
7 = 7 he finds the spiral arm remaining fixed (stationary). The parts of a disk interior
concerning a circle r = r, will rotate faster than the spiral arm (sign ” 4+ ” on Fig. 1b),
and the exterior areas of a disk will lag behind.

So, in an absence of instability in a neighborhood of a co-rotation circle spiral arms
are motionless, that is magnitudes of surface density and the velocities do not depend on
time:

o(r,0) = ao(r) + au(r, @) = aofr) + &(r) cos(2p — F,), (1)
%(r, @) = vi(r, ) = 3(r) cos(2p - F), (2)
vp(r @) = vop(r) + vip(r, @) = vo, + 5(r) cos(2p — F,). (3)

Here the indexes ”0” and ”1” designate, respectively, stationary and perturbed parameters
of the disk, amplitudes of perturbations are marked by "tilde”, F are phases. For example
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Figure 1: Radial dependence of the angular velocity of rotation of the disk: a) in the
laboratory reference frame (fq); b) in the frame rotating with phase velocity (€,1) of
spiral structure. In the latter case the disk is stationary on the radius of corotation ..
Signs ”+” and ”-"in Fig. 1b shows that the direction of the disk rotation changes the sign
on the corotation radius.

we consider a two-armed spiral that is implied by the value 2y standing in the total phases
of perturbed functions.

According to (1) the perturbed surface density o1(r, p) for given 7 changes its sign
with azimuth four times (double number of spiral arms). Respectively, both velocity
components v1.(r, ) and v1,(r, @) change sign with azimuth four times also. As a result
in the vicinity of a corotation circle we obtain two anticyclonic vortices (Fig. 2).

Above drawn qualitative picture of the anticyclone formation in galactic disks is
based on the wave nature of spiral arms only. It is universal and independent of either
the disk composition (gaseous or stellar) or the nature of the mechanism generating the
spiral (gravitational or hydrodynamical)!

1The location of anticyclones relative to the spiral arms depend on the details of the main parameters
of the system in the corotation region. Details see in Lyakhovich et al. 1996.



Figure 2: On the formation of two anticyclons in a neighborhood of the corotational circle
in the galactic disk with two-armed spiral. In spiral arms the perturbation of the surface
density of the disk is positive (sign ”+”), while between arms it is negative (sign ”-"). Thus
sign of the density perturbation changes four times as one goes the total revolution along
the azimuth. The radial velocity behaves in the same manner, that is changes its sign four
times also. In the reference frame rotating with spiral structure signs of the azimuthal
velocity are different on the opposite sides from the corotation circle (see Fig. 1b). As a
result the velocity field near a corotation radius has a form of two anticyclones.

3 Proof of the equivalency of the linearized dynam-
ical equations of the Galactic gaseous disk and
rotating shallow water

It was shown by Fridman (1990) that the perturbed gravitational potential ¥ in the
Galactic gaseous disk is determined only by the perturbed surface density of gaseous
disk &, as in the Galaxy the perturbed surface density of stellar disk . is negligible in
comparison with &,. Thus

2nGa,

¥ = , 4
Ryl (4)



where k is the wavenumber of the perturbation and Ry > 1is a”reduction factor” allowing
for the thickness.

Then the system of linearized dynamical equations for the gaseous disk in the Galaxy
can be written in the following form:

Ovy, Ovy, 0
6; + Qoﬁ = 20ov, = — 5(03,0771)7 (5)
Ovq, Ovy, K2 10 ,
EY + ow - mvlr = - ;%(Cg,oﬂl), (6)
0 0 Ovy, . 1 Ovy,
Tt Mgy T e + (L4rlnoo)) 2 4 L 5 = 0, (7)
where o P
Cgo = Cs0 ,kIRg )y Cso = dO’o’ m = 0,0' (8)

As before, we denote stationary and perturbed values by subscripts ”0” and "1”,
respectively. In writing these equations, we have used that according to a linearised
equation of state P, = Cf,00'0771-

If we make in system (2)-(4) the substitutions cio=1clo=gHy, and g, = H,/H,,
where g is the gravitational acceleration on the surface of the Earth, H is a shallow water

depth, we obtain the system of linearized equations for rotating shallow water (Pedlosky
1982).

4  Discovery of anticyclonic vortices between spiral
density waves on rotating shallow water

The previous item gives the basis to use the rotating shallow water for modeling dynamical
processes in the Galactic gaseous disk. The setups ”Spiral” with shallow water, rotation
curve of which is similar to that of the Galactic disk, were built at the Russian Research
Center ”"Kurchatov Institute”. (Morozov et al. 1984, 1985; Fridman et al. 1985). In
Fig. 3 we can see three interarm anticyclones (Nezlin et al.,1986).

Discovery of anticyclones between spiral arms in the modelling experiments with
rotating shallow water stimulated a search for similar structures in spiral galaxies.



5 A vortex structure in the gaseous disk of the galaxy
Mrk 1040

Figure 3: Spiral-vortex structure excited in shallow water; the camera rotates with the
pattern.

In Fig. 4 we can see the field of residual velocities in the gaseous disk of Mrk 1040
(Afanasiev, Fridman 1993), which is obtained by subtracting an azimuthally symmetric
component of the rotation curve from the line-of-sight velocity field. The structure of
residual velocities shows the presence of two symmetrically located anticyclonic vortices,
the external appearance of which coincides fully with the picture of anticyclonic vortices
in the laboratory experiments on ”shallow” water (Nezlin et al., 1986). The observed size
of the anticyclones is about 4 kpc, and the velocity amplitude (in projection) is about 25

km/s.
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Figure 4: The field of residual velocities in the gaseous disk of Mrk 1040, in the plane
of the galaxy. The near side of the galaxy is below, and an arrow shows the direction of
rotation. The regions of vortices are marked by closed curves.

6 Are there giant anticyclones near the solar circle?

The velocity depression as large as 20-30 km/s on the rotation curve of the Galaxy in
the solar vicinity served as a cause to put forward an assumption on the presence of
an anticyclone in this region (Fridman 1994). The reconstruction of 2D vector velocity
field based on the line-of sight velocity data for 312 star-forming regions (H II regions,
Avedisova 1997, see Fig. 5) has shown that velocities of gas clouds inside 3-4 kpc from
the Sun can be explained by an anticyclone (Fig. 6) with a center near the solar orbit
between the spiral arms (Fridman et al. 1996).

We tried to check if young stellar populations would retrace the anticyclonic struc-
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Figure 5: Line-of-sight radial velocity field of the sample 316 molecular clouds. The Sun
at (0,8.5)

ture of gas in the solar vicinity.

Our sample (Rastorguev, 1997) includes approximately: 256 classical cepheids, pul-
sating in fundamental mode; 106 young open clusters with ¢ < 108y, 99 K-M supergiants
taken from Wing’s (1970) list and 316 molecular clouds (Avedisova 1997).

The restoration of 2D vector velocity field based on the line-of-sight velocity data
for young stellar objects has shown that they retrace the same path of gaseous clouds,
forming anticyclone (Fig. 7).
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Figure 6: The full velocity field of the clouds has the form of an anticyclone with the
center in solar vicinity.

7 A method for restoration of the full vector veloc-
ity field of the galaxy from the map of the line-
of-sight velocity

In the work Lyakhovich et al. 1997 propose the method to restore the full vector velocity
field of the galaxy from the map of the line-of-sight velocity. It is based on the following
general points.

1. Appearance of azimuthal variations of density are intrinsically related with exis-
tence of peculiar velocities (azimuthally varied). As a result we expect to observe dynam-
ically significant velocity residuals everywhere we observe noticeable density variations.

2. Errors in determination of main parameters of the galactic disk such as the center
position, the inclination and the position angle of the line of nodes result in artificial addi-
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Figure 7: Line-of-sight radial velocity field of the sample of 461 stellar objects and 316
molecular clouds. The Sun is at (0,8).

tives to the observed pattern of velocity residuals. Vice versa, the presence of noncircular
velocities can be mistakenly treated (in model of pure circular motions) as the radial vari-
ation of the galactic disk parameters (Lyakhovich et. al, 1997). For example neglecting
azimuthal velocity variations with amplitude about 20 km/s under circular velocity about
200 km/s can result in errors in determination of inclination and position angle about 5
- 10 degrees.

3. The existence of obvious grand design in a galaxy is a consequence of one mode
domination which should manifest itself by the domination of the relevant Fourier har-
monic in density and velocity fields.

Due to effect of projection the m-th harmonic of galactic velocity field produces
three harmonics in line-of-sight velocity field. More particularly, the m-th azimuthal and
radial velocity components (in galactocentric system of reference) leads to appearance
of the (m-1)-th and (m+1)-th harmonics in line-of-sight velocity while the m-th vertical
velocity component (velocity component along rotation axis) causes the m-th line-of-sight
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velocity harmonic.

Consequently, if we observe the domination of m-th harmonic in density field of
the galaxy and (m-1)-th, m-th and (m-+1)-th harmonics in line-of-sight velocity residuals
(that is after subtraction of the rotation velocity) we should conclude the presence of
the m-arm density wave in the galaxy and can use the observed distributions to obtain
parameters of the wave.

4. The rotation velocity contributes in the cosine component of the first harmonic
of line-of-sight velocity (we assume that the position of line of nodes corresponds to 8
= 0, m). As a result, if m > 2 the rotation curve of the galaxy and all components
of the velocity residuals can be determined independently. Under this condition from
observations we obtain six parameters — amplitudes and phases of (m-1)-th, m-th and
(m+1)-th harmonics of line-of-sight velocity field, which allow to calculate six unknowns
— amplitudes and phases of three components of m-th harmonic of residual velocity
vector.

For two-arms spirals the situation is worse as the influences of rotation velocity
and motions in a density wave on the line-of-sight velocity interfere with each other. In
this case six observed parameters — amplitudes and phases of first, second and third
harmonics of line-of-sight velocity field, are related to seven unknowns and to deduce
them one needs an additional condition.

Generally speaking, the latter being theoretically deduced will be inevitably a model-
dependent. Thus the problem arises to choose the condition which is as universal as possi-
ble. From this point of view choose of the particular spiral form (for example logarithmic)
or WKB approximation are obviously unappropriate.

In our method we propose to use some relations between velocity residual characteris-
tics which follows only from the wave nature of the disk perturbations. It means that
different characteristics of the perturbations correspond to one self-consistent structure
with some pattern speed and they are related by the hydrodynamic equations for the
gaseous galactic disk. Furthermore, relations between phases of perturbations are the
most suitable in our opinion. First, it can be expected that these relations do not depend
on the coordinate across the disk and consequently they are not affected by the inevitable
averaging of observational data trough the disk width along the line of sight. Second, as
was shown by Fridman, Petviashvili and Abramyan phase position of the maximum of
the perturbed density changes only slightly as the wave becomes nonlinear. Thus one can
expect that the relations between phases obtained from the linearized equations will be
true for any wave. The last fact can be supported by the note that despite the highly
nonlinear character of the density perturbations the velocity perturbations are in any case
much smaller than the rotational velocity and in this respect are quasi-linear. One can ex-
pect that the quasi-linear approximation will be the more accurate, the more dominative
is the main harmonics in observations.

5. In absence of any undeniable theory of the galactic spirals any apriori relation
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between different perturbation components can become occasionally wrong is some parts
of the disk. To avoid this problem different (independent to some degree) conditions
should be tried with use of various observational information. In our method we explore
two approaches. In first we use the relation between phases of azimuthal and radial
velocity components. In another the relation between phases of density perturbation and
radial velocity is used. In the last case the additional information includes field of gas
density of the galactic disk. The final model of velocity field of the galaxy is build by
comparison of results obtained by two ways. In doing so we try to reach the smoothness
of different characteristics especially of the rotation curve. The later allows to obtain
a reasonable mass distribution in the galaxy without problem. It should be noted that
the condition of meaningful smoothness itself in addition to observed line-of-sight velocity
field rather strongly restricts the possible variety of models of velocity in the galactic disk.

8 Main equations

In this section we give a brief description of main relations used in restoration of the
velocity field of a galaxy. Details can be found in Lyakhovich et al. 1997.

At given position of the center of the galactic disk, the inclination 7 and the position
angle of the line of nodes a the observed line-of-sight velocity as a function of galactocen-
tric azimuth ¢ can be expanded in the Fourier series with coefficients dependent on the
galactocentric radius R:

Nmaz

Ve =y, + > (aff”(R) cos ny + b2*(R) sin n(,o) sini (9)
n=1

Here V, systematic velocity of the galaxy and nmgg is limited by the statistical quality of
the data.

If we attribute the noncircular motions to the presence of the density wave we obtain
the model representation of the line-of-sight velocity: '

V™R, )=V, + Vi(R, p)sinpsini + Vo (R, p)cospsini + V,(R, p)cosi,  (10)
with

Vi(R, 0) = Vi(R, ¢), Vio(R, ¢) = Viot(R) + Vo(R, ¢), Vi(R, 0)=Vi(R, ). (11)

Here Vo is rotational velocity.

If the observations demonstrate the domination of a single mode with azimuthal
number m thus with this accuracy we can use the following expressions for the velocity
variations in the wave:

V?‘(Ra ‘P) = OT(R) cos[mtp - F,.(R)] ’ (12)
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#(R, p) = Cy(R) coslmyp — F,(R)], (13)
Vi(R, ¢) = C.(R) cos|me — F,(R)]. (14)

Il

Hence
V™R, o) = V, + sini [ Viot(R) cos o+

+ am-1(R) cos(m — 1)p + bpn_1(R) sin(m — 1)p +
+ am(R) cosmep + by(R) sinmp +
+ amia(R) cos(m + 1) + bya(R) sin(m + )], (15)

with Fourier coefficients related to phases and amplitudes of the velocity components as

C,sin F, 4+ C,cos F,

Am_1 = 9 ) (16)
by = — C, cos F, — C,sin F, ’ (17)
2
am = C,cos F, ctgi, (18)
bm = C,sin F, ctgi, (19)
Gonn = _C’, sin F, —QC(pcosF“, ’ (20)
bes = C, cos F., ; Cpsin F, . (21)
If m > 2 the above formula allow to calculate the velocity field of the galactic disk.
For two-armed spirals the system becomes incomplete:
C,sinF, + C,cos F. obs
‘/rot + 9 z z = alb 1 (22)
— CrcosF, 4+ C,sinF, = 242 (23)
— CisinF, + C,cosF, = 2a3", (24)
Crcos F, + C,sinF, = 2b3 (25)

For tightly wound spirals [81n f/81n R| > 1 (note that this condition is much less
restrictive then the WKB approximation) outside the corotation one can derive the fol-
lowing relations between phases of radial and azimuthal velocity perturbations:

Fo(R) = F.(R) ¥ /2, for k>0, (26)

F,(R) = F.(R) + n/2, for x®<0. (27)
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The upper sign correspond to the region before the corotation R < R,, the lower — to the
region after corotation R > R,. It is seen that the relation between phases is ’switched’
on corotation. As the phases are fixed up to the +2r only, the way of the ’switching’
can be different. It can be shown that in each particular case the way is determined by
the spirals type (leading or trailing) and the direction of the disk rotation in the pattern
plane. For trailing spirals and 20 > 0:

F‘P(Rc) = Fr(Rc) + T, (28)

while for x2Q < 0:
Fo(R:) = F.(R.). (29)

Correspondent behavior of phase differences with R is shown in Figs. 8.

F,—F, F,—F,

-3n/2 —37/2

Figure 8: Schematic view of radial dependencies of the difference between phases of
radial and azimuthal perturbed velocities for different orientation and parameters of the
galactic disk. (a) The case k2 > 0, solid line — >0, that is if the axe z is directed from
the observer and the disk rotates clockwise; dashed line - Q < 0, disk rotates counter
clockwise. (b) The same for the case x? < 0.

Under condition (26) system (22) - (25) has the form:

obs
I/N'Jt = a4; -

(C.+C,) sinF. (30)

DO —
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(Cr £C,) cosF, = —2bp% (31)

(C. ¥Cy) sinF, = —2a3>*, (32)
(Cr +Cy) cosF, = 252 (33)
This allows to restore all characteristics of the velocity field:
tgFr = —ctgF, = — agb‘/bgb,a (34)
boba)z
cos F, = sign (2% — pobe (65 , 35
o =) \, @)+ P %
C, = (b3 —b%)/cos F,, (36)
Co = F (b2 + b*)/ cos F, (37)
obs pobs
obs az’b
Vit = a7 — 31)5—1,,1 (38)

As above the upper sign is for R < R, and the lower for B > R..
As the amplitudes are always positive, equations (36) and (37) are consistent only

if
65> (R)| — |bs*(R)| <0, for R < R,,
63> (R)| — [62*(R)| > 0, for R > R,.

This condition allows to determine approximately the location of the corotation from the
observations only.

As was pointed in previous section the another way to complete system (22) - (25)
consists in using the information on density distribution. For this purpose we can to
derive the relation between phases of the density and the radial velocity perturbations.

It can be shown that if [Imk| < |Rek|, where k is a wave vector of the wave, the
following relations hold. Qutside the corotation one has

F.(R) = F,(R) + m, for R<R,,

(39)

F.(R) = F.(R), for B> R.. (40)
On the corotation:

F.(R.) = F,(R.) — n/2,for *Q >0, (41)

F.(R.) = F,(R.) + 7/2,for Q< 0. (42)

The approximate behavior of the phase differences with R is shown in Figs. 9.
The dependence of F, on R can be determined by the analysis of the second Fourier
harmonic of the density field. At known F,(R) from (40) and (22) - (25) we obtain:

obs obs
b3 — bl

cos F,

C, = + ) (43)

15



-3n/2 -3m/2

Figure 9: Schematic view of radial dependencies of the difference between phases of
radial velocity and density perturbation depending on the orientation and parameters of
the galactic disk. (a) The case &2 > 0, solid line — >0, that is if the axe z is directed
from the observer and the disk rotates clockwise; dashed line - < 0, disk rotates counter
clockwise. (b) The same for the case k2 < 0.

208 4 (b5 — b¥) g F,

_ 4
CtgF bgb’ +bgba ) (4 )

Co = {(B5 +5°)" + [2ag + (b3 — b3%*) tg B, |2}2/2 (45)
sin F, = (8% 1 6)/C, (46)

Vi = @ — o — (8%~ 4) g B, (1)

Taking into account that C, > 0, from relation (43) we can deduce additional esti-
mation of the corotation location:

(63(R) — b(R)) cos F,(R) < 0, for R < R,,

<
(b"*(R) — b%*(R)) cos Fy(R) > 0. for B> R. (48)



9 Restoration of the velocity field on the example
of galaxy NGC 157

Fig. 10 shows the histograms of line-of-sight velocity Fourier harmonics at different galac-
tocentric radii of the galaxy NGC 157. It is seen that the domination of the second and
third harmonics is profound for the most part of the galactic disk. Thus the method
described in the previous sections can be used to restore the velocity field of this galaxy
(details see in Fridman et al. 1997).
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Figure 10: Histograms of line-of-sight velocity Fourier harmonics at different galactocen-
tric radii of the galaxy NGC 157. It is seen the domination of the second and third
harmonics for the most part of the galactic disk.

The radial behavior of main harmonics of the line-of-sight velocity field for NGC 157
is shown in Fig. 11.

Fig. 12 shows the behavior of |b3*(R)| — |5*(R)| in NGC 157. According to this
data the corotation radius is about 43" & 3"

If we use the condition (26) to complete system (22) - (25) we obtain the charac-
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Figure 11: Radial behavior of main harmonics of the line-of-sight velocity field for
NGC 157. Bars show the observational errors (30).
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teristics of velocity field represented in Fig. 13. In case of NGC 157 spirals are trailing,
k*>0and 0 < 0.
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Figure 13: Characteristics of velocity field of NGC 157 obtained by the first method of
the velocity field restoration, that is if we use the condition (26) to complete system (22)
- (25).

Fig. 14 shows the dependence of (b3>* — %) cos F, on galactocentric radius R. It
is seen that the estimation on the base of condition (48) is in agreement with that from
condition (39). )

If we use the relation between phases of the radial velocity and density perturbations
to restore velocity field, we obtain parameters shown in Fig. 15.

It should be noted that consistency of the procedures used above to complete system
of equations (22) - (25) can be checked directly from the observations. Really, from
equations (20) and (21) one can conclude that under conditions (26) and (40) the third
harmonic of line-of-sight velocity should have a form

Hy = (C, ¥C,) cos(3p — F, —7/2). (49)

Thus the procedures are consistent if the phase of the third harmonic of line-of-sight
velocity is close to the phase of the second harmonic of density minus 7 /2. Fig. 16 shows
the azimuthal positions of the solutions of equation cos(2¢ — F3 + 7/2) = 1, where Fj is
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a phase of the third harmonic of line-of-sight velocity, overlaid on the field of density of
the gas in the galaxy. It is seen that the positions are in good corelation with the density
maxima. The disagreement is relatively high only on the very periphery of the disk where
the lack of the data could play a role.

At the last step the characteristics of the velocity field was varied inside the range of
uncertainty limited by the two procedures described above. By this mean the smoothness
of R dependencies was achieved. Final model which gives the best fit is represented in
Fig. 17. Knowing the behaviour of the phase difference between radial and azimuthal
velocity variations the position of the corotation can be determined more exactly by the
relation (28). In described model this gives R, = 42",

The procedure described above in details for the case of NGC 157 was also performed
to obtain the velocity fields of some other galaxies. Figs. 19 and 20 show some examples of
the results of restoration. In all cases anticyclonic vortices are present near the corotation
circle.

The velocity field in frame rotating with angular velocity Q(R.) is shown in Fig. 18.
The presence of two anticyclones is evident.

10 Conclusions

In conclusion we reproduce main steps of the discovery of giant galactic anticyclones.

1. The existence of important dynamical feature of any spiral galaxy — giant anti-
cyclonic vortices located near the corotation, was predicted by the successful laboratory
simulation on the setups with shallow water ("Spiral”). The modeling is based on the
proof of the equivalency of the dynamical equations of the Galactic gaseous disk and
rotating shallow water.

2. Analysis of velocity field of Mkn 1040 demonstrates the existence of vortex
structures in this galaxy.

3. An evidence for the existence of anticyclone in the solar vicinity of the Galactic
disk was obtained on the base of the data for line-of sight velocities of HII regions and
young stellar objects.

4. A method for restoration of the full vector velocity field of the galaxy from the
map of the line-of-sight velocity was proposed.

5. Using this method the velocity field of several galaxies was restored, and universal
existence of giant anticyclones in spiral galaxies was demonstrated.

The work was performed under financial support of RFFI grants N 96-02-17792 and
N 96-02-19636.
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Figure 16: The correlation between the phase of the third harmonic of the line-of-sight
velocity field (circles) and the density perturbation (gray scale image). The correlation

proves that the observed deviations from pure rotation are caused by the spiral density
wave and validity of the methods used in the paper.
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