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Abstract

A multiagent model is proposed for analysis of self-organization of
trade networks in a transition economy. It is shown that while in the
case of almost perfect infrastructure the system quickly converges to
a near-competitive equilibrium, more imperfect infrastructure results
in significant oscillations of prices and of the structure of the trade
networks, bursts of shortages and longer chains of traders; the system
may converge to multiple equilibria including the suboptimal ones.
Emergence of trader’s market strategies such as stabilizing wholesale
traders and destabilizing speculators is discovered. The model is stud-
ied both analytically and via computer simulations.

1 Introduction

The problem of self-organization of trade structures is of a special interest
for Russian economy. It is known that the trade sector plays a special part
in an economy during transition to market economy. The trade sector ad-
sorbs both significant capital investments and skilled human resources. Some
economists believe that the accelerated development of the trade sector is fa-
vorable for the economy while some others argue that the trade is growing
at the expense of producers distracting the economy’s resources. Anyway,
both acknowledge that the intermediaries are outdoing the rest in a decen-
tralized transition economy. Probably, due to high transaction costs, poor
infrastructure and high uncertainty, the trade profits are very high, and this
attracts new resources and brings about further development of the trade
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sector. Note that unlike other transition economies, in Russian economy the
private trade sector is being built from the scratch in the absence of developed
trade infrastructure.

In Section 2 the general setting and models of behavior of individual
agents are introduced, in Section 3 results of analytical study and simulations
are discussed. Section 4 contains some concluding remarks and directions of
further studies. Detailed survey of related literature is provided in [1].

2 The model

2.1 General setting

We consider interaction of economic agents of three types: consumers, pro-
ducers and traders in a distributed market of homogeneous good. Each type
is described by a set of parameters and rules of behavior in the market. Con-
ventionally for the emergent computations, we tend to simplify the rules of
decision-making for individual agents, and pay most attention to emergent
properties of the whole system.

Denote sets of consumers, producers and traders by C, P and 7, cor-
respondingly. Assume that P and T are finite. Producers are pure sellers
and their behavior is exogenous to the system. Corisumers are pure buyers.
Traders can either buy or sell. Buyers are indexed by : € C U T, and sellers
— by j € PUT. Buyers can buy only one unit of good per transaction. For
every pair (i,j) from CUT x PU T a nonnegative number r;; is defined,
which we will refer to as trade distance. The trade distance is average time
that buyer ¢ has to spend to buy a unit of good from seller j. In an econ-
omy with developed infrastructure the time spent on purchasing is small and
usually is not taken into account. However, in an economy with imperfect
infrastructure such as contemporary Russian economy, the time for gather-
ing current information about the seller, reaching the seller and physically
transporting the good is significant, which, as shown below, may be crucial
for macroscopic dynamical properties of trade networks.

Generally speaking, time spent on transaction is a realization of Poisson
stochastic process with mean equal to trade distance; the processes are in-
dependent for different buyer-seller pairs. However, simulations have proved
that we may use mean flows of good instead of stochastic ones.



Every buyer has buying preferences o;; i. e. if buyer i wants to buy a
unit of good, he will go to seller j with probability a;;. Naturally, we require
0 20,3 ;a5=1and o;;=0,1€ 7.

Sellers are described by their selling prices p; and probabilities of avail-
ability of the good B;. We assume that seller does not distinguish buyers. So
to any buyer who comes to buy a unit of good the trader sells the good at
the price p; with probability £;, and refuses to sell with probability 1 — Bi. B;
is the trader’s control variable and essentially determines the flow of sales.

Producers are passive suppliers of good. Their prices p; and probabilities
of absence of shortage f3;, j € P are constant parameters in the model.

In order to describe the process of trade we apply the framework of
Bertrand competition:

e under given prices buyers decide from which sellers and how much to
buy, so the trade links are established;

e foreseeing buyers’ response, sellers set prices in order to maximize their
profits.

In this framework, equilibrium prices are given by Nash equilibrium. The
corresponding game is defined in a normal form in Section 3.

Our model is a dynamical implementation of Bertrand competition with
trade distances. Agents’ behavior is described by fast and slow variables.
Fast variables are set by agent at every moment of time in order to maintain
his material or financial balance and may change discontinuously over time.
Slow variables are continuously adjusted by agent to current optimizers of his
objective function. For buyers and sellers fast variables determine how much
to buy and how much to sell, correspondingly, and slow variables determine
from whom to buy (buying preferences) and at which price to sell, corre-
spondingly. We assume that hierarchy of time is as follows: fast variables
(quantities) adjust immediately, buyers’ slow variables (buying preferences)
adjust more slowly, sellers’ slow variables (prices) change even more slowly.
So the whole setting may be referred to as Bertrand-Nash one: the sellers
set prices and observe buyers’ response, change prices and observe response
to new prices etc. As sellers do not cooperate, their attempts to maximize
profit by changing price represent Nash-style tatonnement. Due to instan-
taneous adjustment of fast variables all required balances are maintained at
every moment of time.



Agents make decisions on the basis of information available to them.
Every buyer knows trade distances between all sellers and himself as well as
prices and levels of shortage for all sellers. Every seller knows demand for
his good at recent moments of time.

As the set of buyers is in general discrete, the variations of the sellers’
demand over time may be too large. In order to emulate continuity we
consider the adaptation of the buying preferences with some finite rate rather
than the instantaneous switching. In this case the agent adjusts his buying
preferences trying to attain the desired ones, with the adjustment rate p;. So
at every moment ¢ current buying preferences o;;(t) may be different from
the desired ones of;(t):

aij(t + A) = o;(t) + piA(of;(t) — ais(t)) (1)

Here A is time step. We will assume A to be sufficiently small in comparison
with 1/p; so that p;A < 1. The value 1/(p;A) shows the number of steps
required for the consumer to adapt to the external changes.

Now let us consider the behavior of consumers and traders. Consumer is
described by following individual parameters: wage per unit of time s; and
average time of consumption of a unit of good 7;. We assume that he sets
the fast variable in order to maintain financial balance. In [1] it is shown
that expected flow of consumption in this case is:!

> aijfB;

U; = .
¥ aii(Bimi + Bipi/si + rij)

(2)

In [1], we find af; that maximizes this functional over the simplex {&; :
2 ai; = 1,a;; > 0}. In the generic case when p;/(s;) +ry;/B; are all different
for different j, the consumer will tend to select only one seller: af = Ej,
where €j+ is j*-th unit coordinate vector (so that aj; = 0 for 7 # j* and
aj;» = 1), and
j"=argmin&+ﬁ’; . (3)
P8 B _
In the non-generic case, when there exist several such j*, we will assume that
the consumer shares his demand between these evenly & = ¥j. &+ /|J*|.

'In this and further sections, the summation index is j if it is omitted: j € PUT,

J#i



Unlike consumers who maintain the financial balance and maximize the
inflow of good, traders tend to maintain the material balance (expected differ-
ence of sales and purchases is equal to zero) and to maximize profit (expected
financial surplus per unit of time).As a seller, the trader receives the Poisson
flow of buyers with the rate X;. In [1] we show that the condition of mate-
rial balance is equivalent to the following relationship between trader’s fast
variables A; (the flow of purchases) and S;:

/A =)~ aii(B;/(Bidi) — ri5) (4)

Note that 1/A; must be nonnegative.
As shown in [1] the trader’s expected profit equals

To find the fast controls first we shall maximize the functional (5) choosing
Bi € [0,1] that satisfies the condition of non-negativity of (4).
We shall assume that the price p; is such that the profitability condition

holds:

pi — > cii(Bip;)] Y @i 2 0 . (6)
Hence trader wants to increase f§; as much as allowed by conditions §; < 1
and that of non-negativity of (4). There can be three cases.

1. Shortage. The demand is too high: \; > Y @i;B; /Y aijrij. In this case
the trader can not serve all his demand and has to refuse to sell to some
of his buyers 8 < 1. The share of non-satisfied demand is determined
by making (4) equal to zero (i.e. trader spends zero time in the state

1): Bi = ’\llz a;;B; /3 aijri; < 1 and 1/A; =0.

2. No shortage. The demand is sufficiently low: \; < ¥ ;;8;/3 aijri;, so
that the trader can satisfy it completely, 8; = 1 and spends some time
in the free state i: 8 =1 and 1/A; = ¥ o;;(8;/ A — 1) > 0.

3. Edge of shortage. The demand is exactly equal to maximum possible
supply under given slow variables: A; = ¥ @;;8;/3 o;ri;, so that both
,3,' =1 and I/A,' = 0.



Now we shall describe the adjustment of the buying preferences to the desired
ones. To find the latter the trader solves the problem of maximization of the

functional
I — 2 %sBi(pi — ps)
C max{¥ ai;Bi/ N, T ijrij}
by choosing a;; > 0, ¥ a;; = 1.

This optimization problem is solved in [1]. The solution depends signifi-
cantly on the magnitude of demand ;. If it is low enough (i. e. in the first
case) then the trader maximizes profit per unit of good j* = arg max; A;(p; —
p;) and buys from a remote seller with the lowest selling price. In the second
case he maximizes profit per unit of time j* = arg max; p; — pj — ri;/B; and
buys from some closer seller with a higher price. The intermediate situation
is also possible in which the seller with the lowest price is too far away and
buying only from him the trader would not be able to satisfy his demand,
and vice versa the seller that provides maximum profit per unit of time is
too close and buying from him the trader would be able to serve more buyers
than he has. In this situation the trader diversifies his purchases and buys
some amount from a remote seller at a lower price and the rest from a closer
seller at a higher price in order to satisfy his demand exactly. In [1] it is
shown that all three situations are generic.

To achieve higher profit, the trader can also change his selling price p;. If
the trader knew all internal parameters of his buyers and had unlimited com-
putation capacities, he would be able to calculate the dependence of Ai(pi)
exactly. However, a more realistic assumption is that the trader’s capabilities
to obtain, store and process information are limited, and in forecasting his
demand function the trader uses only his observations of the demand in the
past. We assume that after every adjustment of price the trader keeps the
price constant for some time A; and observes what happens. He believes
that average demand per unit of time between two subsequent adjustments
of price Ai(t) = A7 [f*49 X;(€)dE is function of his price pi(t) during this
period of time [¢,? + A;]. Hence, using historical data on demand, the trader
can estimate (locally) the derivative of demand by price

(7)

3—2;’& +Ai) = F (pi(t), M(t), milt — M), At — A), )

Here F; is a function that gives forecast for demand sensitivity to price by past
values of demand and price. E.g. F; = (pi(t) —pi(t—A;))/(Mi(t) = Xt — A)).
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We require that the relative change of price be bounded by —e* A; and
E +A to provide the continuity of price over time at sufficiently small A;
(¢L and €', are internal parameters of the i-th trader’s). The matter is that
trader’s demand and therefore profit depend upon not only his behavior but
also upon other traders’. This is why if we allow to change the price discon-
tinuously in order to achieve the desired maximizer of profit instantaneously,
the system would have oscillations of high magnitude or, in generic case,
chaotic behavior caused by interrelationships and imperfect information of
traders. If the trader has shortage at this moment of time §; < 1, he increases
price to (1 + €} A;)pi(t), and if he has zero demand, he decreases price to
(1 - eLAi)pi(t).

Also, to make the system more robust we let the moments for re-evaluation
of price be stochastic rather than deterministic. We assume that re-evaluation
moments arrive according to Poisson process with rate 1/A; (as in [3]). This
removes artificial coordination of traders’ decision-making and eliminates the
oscillations that are caused by specifics of simulation methods rather than
by the properties of the system itself.

3 Dynamics of trade networks

3.1 Equilibria and oscillations

We have defined the dynamical system, the current state in which is given
by the set of the slow variables for all agents: ;j,p;. In this section we
shall study the properties of the whole trade network. We will consider the
state of the system to be an equilibrium if all buying preferences are optimal
and all traders’ prices are local maximizers of their profit functions. The
profit functions II;(p;) are obtained under given other sellers’ prices from (7)
with demands and buying preferences determined by buyers. Note that by
definition, in equilibrium #; =1 foralli € T, as ifa trader has shortage, his
profit function II;(p;) is increasing.

Assume that distribution of consumers in space and by wages is such that
every trader’s profit function is concave for all prices of other traders given.
Then a state is an equilibrium if and only if it is a Nash equilibrium in the
following game: the set of players is 7', their strategies are prices p; and their
payoff functions are the profit functions II;(p;) defined above. In this game
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Figure 1: Non-concave profit function in case of clustered distribution of
consumers.

Nash equilibrium exists if the wages and trade distances are bounded and
profit functions are concave (see proof in [1}).

If a trader ¢ has shortage §; < 1, his profit function II;(p;) is linearly
increasing and concave. But if a trader has no shortage 8; = 1 then profit
functions need not to be concave. It depends upon distribution of consumers.
In this case the profit received from selling to a single consumer is an increas-
ing fraction-linear function until the consumer moves another seller and the
profit function discontinuously falls down to zero. If a trader increases price
some of his previous consumers will tend to buy from different sellers. The
trader makes more profit on consumers who still buy from him but he loses
all profit from the consumers gone. If distribution of consumers is uniform
(approximately same number of consumers at every level of wage in every
point of the metric space) then with increase of price the profit first grows
slowly and then falls slowly and may be concave. But if the distribution
is clustered like in Fig.1 then after the trader loses a whole cluster of con-
sumers due to infinitesimal price increase, his profit falls by finite quantity
as increase in profit from remaining customers is infinitesimal. Further price-
increase contributes continuous increase in profit until the trader loses next
cluster. In this case the profit function has several local maxima and is not
concave so that the Nash equilibrium may not exist..

However, the equilibrium in the dynamical system considered may still



exist in the absence of Nash equilibrium, moreover, there may be several
equilibria. This can lead to persistent oscillations in the system. As the local
maxima of a trader’s profit function depend upon other traders’ prices, the
change of price of trader i may make trader j to switch from seeking one
local maximum to another one, consequently change of price of trader j will
influence profit function of 7 and make the latter to change his price again
etc.

The other source of instability contributed by singularities in distribution
of consumers is caused by sudden shortages. This danger is significant when
consumers change their buying preferences too fast (high p;). If a large group
of consumers has the same location and wage then a small change of trader i’s
price may force them to go to another trader j. If the group is large enough,
trader j that used to have no shortage before, will have shortage now, so his
attractiveness to consumers will fall abruptly by finite quantity. Then the
whole group of consumers will go back to trader ¢ and create shortage there
etc. Note that if consumers’ y; is small enough the shortage occurred will not
be large and the trader will have time to overcome it by increasing his price
so the trader considers his profit function to be continuous. The situation
becomes more dramatic with the worsening of the infrastructure as the small
changes in prices now generate comparatively high levels of shortage.

3.2 Impact of imperfect infrastructure

Thus the average time spent on buying a unit of good ¢; = ¥ ayjri;j /T aijB;
is very important for both consumers and traders. The expression contains
both B; that are determined as a result of interaction of agents and trade
distances r;; that are parameters. The greater r;;, the more time buyers spend
on buying, so it is reasonable to consider r;; as a measure of imperfection
of infrastructure. In order to study impact of imperfection of infrastructure,
we will compare systems in which all trade distances differ in p times, i.e.
we suppose that the trade distance matrix is proportional to some given
matrix r;; = pR;; and will study dependence of dynamical properties on the
coeflicient p with all other parameters fixed.

If p — 0, then there is near perfect infrastructure, price differentials and
trade profits are also small and there are no shortages. Indeed, if sup s; < co
then demand is bounded although increasing at p — 0, therefore f; are
at least separated from zero and ¢; — 0. Hence, ¢;A; — 0, and there are
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Figure 2: Convergence to equilibrium under near-perfect infrastructure. The
graph shows evolution of average traders’ price over time. All producers’
prices are equal to 1.

no shortages §; = 1. In this case system quickly converges to equilibrium
without oscillations. _

Therefore if p is sufficiently small, either consumer will buy directly from
producer or consumer will buy from a trader who will buy from producer, and
there can not be any chain of traders serving consumers. When p increases,
traders’ prices grow no faster than linearly with p. Indeed, for any j if
pj > Pk + (8i)(rij — Tik), ¥ € P then consumer ¢ will buy from producer
k. If sup s; < oo then traders will lose all their demand when prices grow
faster than linearly with p. Therefore in case of non-trivial trade network
prices grow not faster than linearly with p and consumers’ demand falls as
a/(p+b). Hence quantities g;A; ~ ap/(p+b) increase with p. The coefficients
a, b are determined by relative trade distances R;; (the network structure),
real wages s;/p;j, i € C, j € P and the consumption rate 1/7;.Thus, worsening
infrastructure results in qualitative change in the self-organization processes.
We can see that the trade profit depends on p non-smoothly.

When p is small all traders have no shortage and no long chains of traders
exist. The system quickly converges to near-perfect equilibrium and traders’
profits are small (Figure 2). However when p grows large enough the phase
transition takes place: as quantities ¢;A; grow the shortages become more
likely. There is no shortage in equilibrium, but one should distinguish equi-
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Figure 3: Phase transition because of worsening infrastructure. The graph
shows dependence of all traders’ profit II on imperfection of infrastructure p
in logarithm scale.

libria with 8; = 1, 1/A; > 0 and B; = 1, 1/A; = 0. The former is more
likely to happen at smaller p and the latter is more typical for greater p. The
latter corresponds to the case when a trader buys from two sellers; unlike the
former, it is an equilibrium at the edge of shortage. A small change of other
traders’ behavior may make the trader fall into shortage. One should men-
tion that once caught in the shortage trap, the system can not rapidly get
out: every trader tries to get rid of shortage but if all his counterparts have
shortages and producers are too far, he simply does not have time to satisfy
all his demand. So what happens is the bursts of shortages that traders
slowly take over (Figure 4). Note that in the phase transition g;\; > 1 so
that traders buy from each other and longer chains of traders do exist. This
leads to an abrupt increase in trade profits as can be seen in Fig.3. In this
case trade hierarchies emerge due to imperfect infrastructure rather than due
to economy of scale that wholesale traders possess if the triangle inequality
is violated.

Further worsening of infrastructure gives rise to inability of traders to
serve all consumers, so consumers with low s; (poor consumers) will prefer
to buy directly from producers,? and traders can only satisfy the demand of

In Russia, about USD 11 bln. worth consumer goods are imported annually by indi-
viduals which accounts for tens percents of overall Russian import.
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Figure 4: Bursts of shortages at the critical value of parameter p. The graph
shows time series of average 1 — §;, 1 € T.
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Figure 5: A Multi-level structure.

upper segment of consumers that buy at prices much higher than original
prices of producers.

3.3 Emergence of trade structures

The two most interesting types of the behavior emerging may be referred
to as hierarchical stabilizing and destabilizing speculation. The former cor-
responds for supercritical values of p (i. e. after the phase transition), the
latter is typical for the critical situation.

The former case corresponds to the multilevel system as in Figure 5.
Consumers are located at the lowest level D. They buy from the sellers at the
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Figure 6: Price destabilizig speculator: a fragment of long-run price oscilla-
tions. The graph shows time series of the speculator’s price (bold line, left
scale) and average price of other traders (right scale). Average time of price
re-evaluation is 5 units of time.

level C while they prefer to buy from the wholesale seller B because of having
shortage. The seller B is buying from the producer A. For y; sufficiently high
it will be a persistent oscillations in the demand for the traders’ C1 and C2
good, as we have shown above. However, the demand for the seller B’s good
is not oscillating, or at least is not oscillating as much as the demand at the
lower levels, because at every moment of time either C1 or C2 has shortage
so he is likely to buy from B.

The latter case requires the distribution of consumers to be singular and
an ineflicient trader in the system to be present. This trader potentially can’t
obtain non-zero profit in the static case. Initially this trader can’t prevent
loosing all his buyers. Then he is decreasing his price in order to have non-
zero demand. After he gains some buyers his demand is increasing because
of low price and not very high level of shortage. Eventually his attractiveness
for buyers falls because of the high level of shortage and rather high price set
in order to overcome it. He loses all the demand initially obtained. All this
lost demand now is switched to the rest of the traders rather suddenly hence
new shortages are generated. Than the inefficient trader begins to decrease
price in order to gain some buyers etc. The price oscillations are shown in
the Figure 6.
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4 Conclusion

We have considered a model that can be applied for study of self-organization
processes in trade networks in an economy with imperfect infrastructure.
Such model may be applied for analysis of market for imported consumer
goods in Russia with international suppliers being denoted as producers.
The behavior of world market does not depend upon processes in Russian
economy, so producers’ prices are given exogenously.

The main result of both analytical and computational study of the model
is that evolution of trade networks depends significantly on the degree of im-
perfection of trade infrastructure p. If the infrastructure is almost perfect the
system quickly converges to a near-competitive equilibrium without shortages
and long chains of traders. Worsening of infrastructure brings about phase
transition: large scale price oscillations and regular shortage bursts are ob-
served, long chains of traders emerge and disappear spontaneously. In case
of even more imperfect infrastructure the trade system turns into monopoly-
like equilibrium: the prices and trade profits are high, and poorer consumers
have to buy directly from producers.

We are grateful to Prof.1.G.Pospelov for his contribution to the makeup
of the model and to colleagues from Computing Center of Russian Academy
of Science for useful discussions.
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