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On the modelling of fractal tree-like
structures in biology
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The fractal tree-like structures can be divided into three classes, according to
the value of the similarity dimension D,: Dy < D, D, = D and D, > D, where D
is the topological dimension of the embedding space. An important characteristic
of the trees with D, > D is the self-overlapping exponent. As an example, we
study the model of the human blood-vessel system with D, =~ 3.4

1 Introduction

The fractal tree-like systems can be met rather often in biology [1]. The most
obvious examples are ordinary trees. The physiological tree-like structures
— such as a blood-vessel system, a lung, nerve tissues, a lymphatic system
— are “hidden” by tissues. For this reason, it is quite a complicated task
to study the fractal properties of them. The constituent parts of these tree-
like systems (single blood vessels, neurons and bronchial tubes) have been
studied for a long time and the physical properties of them are known in
great details. Meanwhile, the global properties of the respective “trees” have
been the object of systematic studies only during the last decade.

Several papers have been devoted to cite the airway tree of a lung (c.f.
[2-4]) and to the tree of blood-vessels (c.f. [5-8]). They include extensive
experimental measurements and concern mainly the geometrical arrangement
of the branches. Also, mathematical models have been proposed to match
the experimental data. However, they do not provide a complete consistent
fractal description of the system. A good consistent model should satisfy the
following criteria:

a) it should be in accordance with the simplest physical laws, such as the



flow continuity and the Poiseuille law in the case of the blood-vessel
system;

b) it should satisfy certain physiological requirements, e.g. ensure a com-
plete (homogeneous) blood supply of the organism;

¢) it should be in accordance with our knowledge about the processes gov-
erning the growth and formation of the “trees”;

d) it should be self-similar within a wide range of scales;

e) the result of many iterations of a generation-to-generation relation spec-
ifying the model should not be very sensitive to the subtleties of the
model;

f) the model should not contradict empirical data.

Some comments are needed here. First, it is possible that a tree is not self-
similar. Instead, it can be multifractal !. Besides there can be a a transition
scale between two different scale-invariant regions. Item d) here means that
as soon as an exponent of a scaling law is claimed to be a fractal dimension,
the system should be self-similar.

Second, in most cases the consequence of the item b) is that the spatial
distribution of the branches of the tree should be quasi-homogeneous, i.e.
the tree should be space-filling. For instance, in the case of the blood-vessel
system, the homogeneous blood supply implies that in the vicinity of each
point of the organism there is a blood-vessel. Analogously, the alveoli fill
almost all the space of the lung. Perhaps in a less extent this is true for a
neural network; however, within distinct regions of the organism, the distri-
bution of neurons is also quasi-homogeneous. Thus, the box-counting and
Hausdorff-Besicovitch dimensions of these trees are equal to the dimension
of the embedding space, D, = Dyg = D = 3. However, the similarity
dimension D, may be larger 2. This issue is discussed in the Sec. 3.

'Multifractality is the most general scale-invariant behaviour.

2D, is defined by the logarithm of similarity factor base the branching ratic. Alterna-
tively, it can be defined via the scaling law M o [P where M is the (average) mass of a
branch of length {. The second definition is applicable to the random fractals, as well



2 Trees with D, = D. The model of bronchial
tree.

Bronchial tree is a good example of a space-filling fractal tree, the similarity
dimension of which equals to the dimension of the embedding space. A char-
acteristic feature of this kind of trees is that a distinct branch (together with
its sub-branches) forms a compact space-filling structure, so that overlapping
of different branches of the same generation is insignificant.

In Ref. [9], a simple regular 3D model of lung has been presented. Ac-
cording to that model, all the bronchial tubes are similar to each other; each
tube branches into two smaller tubes which are perpendicular both to the
given tube and to the tube of the previous generation.

Sometimes a confusion has been caused by the fact that the experimental
dependencies are not power laws (as would be expected in the case of self-
similarity). Thus, in Ref. [2] it has been pointed out that the plot of the
logarithm of the average diameter of the bronchial tubes versus the generation
number differs notably from the straight line. It has been shown in Ref. [10]
that the experimental curves can be modeled fairly well, if we take into
account the presence of the small-scale cut-off at the alveoli size. Indeed,
for real lung, the two branches of a bronchial tube are always of a different
size. Thus we can modify the model of the paper [9] by introducing the
distribution function of the diameter ratio of the branches. Due to such
an unequal branching, the generation number of the alveoli (the alveoli are
assumed to be approximately of the same size) can vary several times. The
power laws can be expected only by the generation numbers, smaller than
the smallest generation number among the alveoli.

Another example (though not biological) of the trees with D, = D is the
river networks. The network is space-filling, if we assume that the sources
are distributed quasi-homogeneously. The compactness is caused by the two-
dimensional topology: two branches cannot intersect.



3 Trees with D, > D. The model of blood-
vessel system.

It can be easily understood that the Hausdorff-Besicovitch and box-counting
dimensions of a space-filling fractal set Dyg and D, are equal to the topo-
logical dimension of the embedding space D. It is generally accepted [1] that
the similarity dimension D, coincides with the Hausdorff-Besicovitch dimen-
sion Dyp. Thus it may seem that always D, < D. However, the equality
Dy = Dyp, Dy can be applied only if all the dimensions are less than the di-
mension of the embedding space. One can imagine that the tree with D, > D
is obtained as a projection of a tree embedded into a space of higher dimen-
sionality. Indeed, as a result of such a projection, the dimensions Dyp and
D, become equal to the new value of D, whereas the similarity dimension
will remain unchanged.

The similarity dimension exceeds the topological dimension if the ratio
0n/l, of the average distance between the branches of n-th order 6, and
average length of the branches [,, vanishes towards higher generation numbers
n, i.e. towards smaller values of [,. This is possible in two cases:

1. the tree is not self-similar, but instead, self-affine; 3

2. the branches of the same generation number have significant overlap-
ping regions.

Being guided by the assumption of self-similarity, the similarity dimension
of the blood-vessel system can be easily assessed using the following empirical
data: the length of the capillaries (i.e. the vessels of the last generation)
Ao = 0.5mm (cf. [11]), the length of the largest vessels (aorta) lp ~ 0.5m and
the total length of the capillaries, L ~ AN =~ 100,000km. The total number
of capillaries NV can be expressed via the effective number of generations n.
as N = 2"/, the similarity factor a can be expressed as a = (\g/lp)"/s7.
Using the definition of the similarity dimension we can easily find

D, =—1/log,a = 3.4. (1)

In fact it is not surprising that the similarity dimension of the blood-vessel
system exceeds the dimension of the space. Indeed, in order to provide an

3A set is called (statistically) self-affine, if an affine transformation of a subset and the
set itself are (statistically) equivalent.



homogeneous blood supply of the organism, the distance between capillaries
should be less than the effective diffusion radius 8455 ~ 100pm. Thus the
relative distance between capillaries is smaller than between large vessels.

Recently, several papers have been reported that the fractal (box-counting)
dimension of retinal and subcutaneous vascular networks is close to d, =~ 1.7
([6,12,13]). Note that both networks are effectively two-dimensional. The
obtained value is very close to the fractal dimension of diffusion-limited ag-
gregates (DLA), dpr4 = 1.75. This coincidence has been lead to the thought
([13]) that the growth of the blood-vessels is indeed governed by the diffusion-
limited aggregation.

The growth of the vascular network is controlled by several chemical
mechanisms. The generally accepted model (c.f.[13,14]) of this process can be
outlined as follows. In the growing organism, the tissue cells grow at a certain
rate and subdivide when a maximum size is reached. The existing vascular
structure grows with all the other tissues. The distance between capillaries
grows as well; this can cause ishemia of the most distant cells. Ishemic cells
generate chemical substances which lead to angiogenesis (angiogenic factors,
AF). The particles of AF diffuse in all the directions. These particles can be
captured by blood vessels; when captured, they cause new vessel sprouting
towards the ishemic cell (actually, towards the higher concentration of AF).
Some purely perfused vessels undergo regression and disappear.

Despite the fact that diffusion plays an important role in such a model, it
seems that in most cases the growth is not diffusion-limited. Instead, diffu-
sion is faster than the growth of the tissues: the time between the subsequent
emergence of two ishemic regions is longer than the characteristic diffusion
time. Such a growth model leads to a space-filling statistically self-similar
vascular tree. If we assume that the average distance between the capillaries
is constant during all the growth process and that the regression of vessels is
negligible, there would be a fractal tree of D, = 3 with slightly overlapping
branches. Besides, the relative distance between the large vessels would be
equal to the relative distance between capillaries.

If we admit that the regression of vessels can be significant, we obtain a
tree with D, > 3. The higher the regression rate is, the higher the similar-
ity dimension will be. Such an unequality has two observable consequences.
First, the relative distance between vessels increases with the size of ves-
sels. Second, there will be a significant overlapping of the same-generation
branches. This is rather important from the physiological point of view: the
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damage of a vessel will not lead to the complete cease of the blood supply:
in a vicinity of every cell fed by a capillary belonging to the damaged branch
there are capillaries belonging to healthy branches. In order to describe this
effect quantitatively, we introduce the overlapping exponent of a fractal tree.
Let us draw around a branch of size | a sphere * of diameter I. We repeat
this procedure with all the branches, the size of which is between L and 2L,
ie. L <l < 2L. Further, let the maximum number of spheres of non-zero
intersection scale with size L as

Nomag o< L7°. (2)
Then we say that f is the overlapping exponent. It is easy to see that
B=D,—-D. (3)

Indeed, in the case of vascular system the average distance between the vessels
of size [ with L < [ < 2L can be calculated as d ~ [[3/(2™L)]'/?. Here m
denotes the effective generation number of the vessels of given size; it can
be eliminated using the expression for the similarity factor a = (L/lp)/™ =
271/D:_ Finally, the number of overlapping spheres can be assessed as Nyap &
L3/(d*L) =~ (Io/L)P—3.

Due to the lack of experimental data, it is impossible to check directly
the applicability of our model. In fact, it is a very difficult technical task
to make three-dimensional measurements of vascular tree and cover a wide
range of scales. However, detailed data are available concerning the corre-
spondence between blood pressure, flux of blood and diameters of the vessels.
Particularly, the diameter of the vessels scales with the flux w of blood as
d o w'/* & a2 2.7 (see Ref. [15]). According to the model and Poiseuille law,
this scaling law corresponds to the dependence p(d) = py—cd” with v = —0.5
(the exponent v can be expressed via @ and D, ), where p(d) denotes the av-
erage blood pressure in the vessels of diameter d (see Ref. [10]). This law is
in accordance with the experimental data (c.f. [11]) and can be considered
as an indirect argument supporting our model.

Now let us return to the experiments reporting fractional values of the
box-counting dimension. The fractional values seem to be in most cases
artifact and caused by one of the following reasons: a) the range of scales

“In the case of self-affine trees, we would have to draw an ellipsoid.



used in analysis is too short, b) the vessels have a specific spatial distribution
(this is the case for the retinal vessels in the vicinity of fovea), ¢) the smallest
boxes used in box-counting method are too small, the size of them is too close
to the lower cut-off scale of self-similarity (e.g. to the scale of capillaries).

Finally, it should be emphasized that the model described above cannot
be used equally well for all the scale-lengths. The experimental data [16,17]
indicate that for some scale-lengths the vascular tree can be notably non-
self-similar: the exponent of the local fit to a power-law (referred to as the
“local fractal dimension”) revealed a significant dependence on space-scale.
Further experimental data are needed to determine the range of applicability
of the model.

4 'Trees with D, < D.

Most of the ordinary trees fall into this category. Typically, the fractal di-
mension of them is something between two and three. The trees with D, < 2
are very “transparent”; the shade of such a tree (even with leaves) has sig-
nificant holes. On the other hand, the trees with D, > 3 are very thick: it is
impossible to climb on these trees, because all the space of the heads of the
trees is filled with branches.

Despite the fact that the ordinary trees can be easily accessed and mea-
sured, it is rather difficult to calculate the fractal dimension of them. This
is caused by the three-dimensional geometry. One possible solution is to
measure the length !; and mass M; of each branch and find the similarity
dimension as the minimum of the function

F(D,) = Y (1B + 12 — 122} /12D, (4)

In fact, we can do the measurements even on two-dimensional photographic
images, assumed that trees have lost their leaves and all the branches can
be distinguished®. For instance, using the images of several birch trees we

obtained D = 2.6.
>The other methods would fail here and yield D = 2.




5 Propagation of passive component in blood
vessel system

In this section we outline a simple implementation of the model of vascular
tree [18]. We consider the transport of a passive admixture through the blood
vessel system. It is assumed that the admixture has been injected

into tissues and fills a certain region between the vessels. Besides, the
following assumptions are made:

a) outside the vessels, the propagation of the admixture is diffusive, of
molecular diffusivity Do;

b) the admixture particles can penetrate the walls of the vessels;

c) the presence of the admixture around and inside the vessels does not
affect substantially the blood flow in these vessels. However, a small
change (by a factor of the order of two) in the rate of the blood flow is
admitted;

d) a vessel is called to be of size L, if its length is between L and 2L. The
vessels of size L form an homogeneous network;

e) the transport is accomplished in the venous half of the blood-vessel tree.
In fact the admixture is convected also by the arterial flow, but this
is the convection towards the capillaries and the transport distance in
the arterial tree is limited by the size of the vessel where the injection
was made;

f) the blood flow in vessels is laminar (c.f. [11]).

The analysis is based on two “integrals of motion”: the first one is the
expression for the total volume of the whole body:

V = N(L)LMLY, (5)

where A(L) denotes the average distance between the neighboring vessels of
size L and N(L) — the total number of vessels of size L.

The second one is the estimate of the total flux of blood through the
heart:

Q= N(L)v(L)d(L)". (6)
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Here v(L) denotes the characteristic velocity of the blood in a vessel of size
L and d(L) — the diameter of the vessel of size L. These equations are valid
for any value of L. Sometimes it is more convenient to use the combined and
hence a dependent “integral of motion”:

_ LD
1Q = Shyay ~ 1000s: (7)

Here the numerical value 1000s was obtained by substituting V = 70dm?® and
Q@ = 70cm?.

Let us assume that inside the tissues there is a spot of passive admixture
which diffuses into the blood vessels and will be carried into the other parts
of the organism by blood. The admixture can be an injection, a venom of an
insect or of a snake or something else. The character of propagation depends
on the seed diffusivity Dy and on the initial size of the spot r. It can be
shown that there are four qualitatively different regimes of propagation.

The admixture propagates in the form of a "sausage” around the vessel
stretching out of the initial spot. The diameter of it can be assessed as /Dyt
and the “stretching” velocity of the “sausage” as

d(L)?
Dot *

veff ~ (L) (8)
If the spot is large and diffusivity low, the admixture fills the vascular system
approximately during one rotational cycle of blood, 7 = W/Q & 1min, W
being the total volume of the blood.

Otherwise the convection is slowed down by diffusion inside the tissues.
It can be shown that in this case the characteristic time of invading the whole
organism is given by 7 = V/Q ~1000s.

6 Conclusion

We have considered three different classes of fractal trees, with D, < D,
D; = D and D, > D, where D, is the similarity dimension and D — the
dimension of the embedding space. Most of the physiological tree-like struc-
tures belong to the second class and most of the ordinary trees — to the first
one. We have discussed the fractal model of vascular system with D, = 3.4.



On the basis of this model, we have analyzed the transport of passive com-
ponent by blood. Depending on the diffusivity of the passive component, the
characteristic time of invading the whole vascular tree can vary from one to
twenty minutes.
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