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! Nonlinear Structures: Soliton Model of Turbulence

A Kingsep
Russian Research Center ’Kurchatov Institute’
123182, Moscow, Russia

Introduction. This paper is devoted to the problem of the strong Langmuir
turbulence which combines both turbulent behavior and nonlinear structures.
First such a model had been proposed in [1], futher results were presented in
2, 3].

In many problems of plasma physics, solid state physics, hydrodynamics of
the surface waves etc. the weak turbulence approach may be used. It is based,
as a rule, on the random phase approximation, thus reminding the incoherent
light. The most typical window of parameters they use to determine the limits of
its applicability, may be determined by the "degree of turbulence’ W/nT where
W is the energy density of oscillations and nT the thermal energy density. For
example, for the Langmuir waves, the most typical plasma mode, they use the
following chain of inequalities:

1> 25 ]
nT ND.

Here Np > 1 is the number of particles in a sphere of the radius equal to the
Debye length rp. Only great Np typical of the hot and/or rarefied plasmas allow
the predomination of the colective effects.

Meanwhile, only in very few cases of the strong turbulence the left inequality
becomes violated, so that W ~ nT. E.g., in hydrodynamics, it would mean the
oscillating velocity being of the order of the acoustic velocity. Much more typical
of strongly turbulent regimes are the effects of coherence, phase correlation and,
after all, the nonlinear structures. Thus, the question arises: can such a regime be
turbulent or not? The matter is that superposition principle breaks in essentially
nonlinear media (cf., e.g., steady magnets), thus, at first sight, turbulent behavior
becomes impossible.

This is the general problem, however, the physical community started study-
ing strong Langmuir turbulence following, first of all, the problems of laser fusion.
The typical mechanism of the energetic input into the plasma corona of a laser
target was collective one even for Nd lasers (A = 1.06 4) and moreover for CO,
lasers (A = 10.6 1). The collective absorption was being based on the parametric
instabilities, in a result, the main fraction of energy put in turned out to transfer
just to the Langmuir waves. The latters, within the frames of the weakly turbu-
lent regime, would loose their energy, in average, little by little. Let us follow the
dispersive relation of the Langmuir waves,

3
W= wpell + E(krp)z], krp <1
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with wy,e = (47ne?/m)'/? being the electron plasma frequency and rp Debye
radius. One can readily see that the overwhelming fraction of the oscillatory
energy remains frozen in the long-wave plasma waves with w =~ wp.. There is
the only mechanism of damping of these waves, and not so efficient one, that is
collisional damping. It is interesting to note that such a scenario turns out to be
opposite to that of the conventional Kolmogorov turbulence, in which the source
in the k—space corresponds to the longer scales while the leakage of the energy
of oscillations is usually located in small space scales.

At first sight, that means the resulting accumulation of the wave energy in
a plasma corona, that is so-called condensation of plasmons. In fact, nonlinear
effects join the game, first of all, modifying the dispersion law:

3 w
= wpe[l + =(krp)® — B—], 1
where § ~ 1 and W is the energy density of the plasma waves. It is interesting to
compare (1) with the relativistic form of the energy of a nonrelativistic particle:

2
£=m+ L 1 U(r). (2)
2m

Weak turbulence is nothing but the perturbation theory based on the zero
level representation of the oscillating field as an ensemble of the non-interacting
waves (quasi-free plasmons). Let us note that usual particles in (2) remain almost
free and their energy may be estimated as p?/2m only if U < p?/2m. It is no
use to compare their potential energy with mc?. Respectively, the validity of the

weak turbulence theory for Langmuir plasmons should be estimated as

W < nT(krp)*. (3)

If this inequality becomes violated, intermode coupling turns out to be strong
even on the level of zero order approximation. Although such a turbulence is not
strong in the sense of separation of oscillating and random particle motion, the
quasiparticles have to be built on the base of the renormalized theory. Thus, in
fact, the parameter of expansion while constructing the weak turbulence theory
has to be not W/nT but W/[nT(krp)?]. First, it was established by Vedenov
and Rudakov, 1965 (see, e.g., [2,3]). In particular, it was shown that, as a result
of violation of (3) inequality, the specific modulational instability had to start
resulting in the localization of plasmons in some clots or drops. In other words,
instead of a homogeneous weak turbulence, nonlinear structures would arise.
Basic Equations. Langmuir Soliton. What does occur after weakly tur-
bulent treatment becomes broken? It looks not incredible that we can proceed
something like the quasiparticle formalism. However, the quasiparticles them-
selves have to be chosen of the new form and with some new properties. Plane
wave (or another linear approach) does not fit more. Of course, Fourier expansion
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may be used in any case. But in general we have to study plane wave ensemble
including fast varying phases, not only spectral intensities. To escape the viola-
tion of the main basic property of the stationarity of numbers of particles in each
initial and final state we should search for a new kind of quasiparticles. Let us
remind that modulational instability results in the localization of the oscillatory
field, in other words, chaotic turbulence tends to the transformation into the non-
linear structures. Thus, it seems reasonable to start from the nonlinear equations
in the z-space without using the Fourier transform. To separate oscillating and
slow evolution of all the physical parameters, the following substitution is useful
to use: 1

E(r,t) = 5 [E(r, t)exp(—iwpet) + c.c] (4)
with &(r, t) being the complex amplitude and ¢ the ’slow’ time, i.e., 8/0t < Wpe-
The nonlinear dynamics turns out to obey Zakharov equations [4]):

' §
div[2z'(;—1t3 + 3wper VdAivE — w,,,,?"E] =0 (5)
0’ |E)”
Y 292 _ U2
5 c;V:)én = V T67 0, (6)

where én is the density perturbation, ¢, = /T./M; ion acoustic velocity, all other
terms are conventional. We keep the operator *div’ in the LHS of (5) since two first
terms are the potential vectors but the third. To keep the correct space symmetry
we have to keep 'div’ but only in the 1-d case. In the linear approximation, the
system (5,6) becomes splitted resulting in the independed acoustic motion with
immaterial HF pressure in the RHS of (6), and linear dispersion of Langmuir
waves, in accordance with (1).

For simplicity, only 1-d case will be considered in this paper. It is useful to
note that 3-d dynamics is essentially different (see [2,4]).

Let us assume a very slow motion when both electrons and ions are permitted
to be described by the Boltzmann distribution:

ed PHF
Ne = noexp(? - T

)= n; = ( Q) P ~u<<nT
= n; = ngexp T ) HF = T )

where @ is the potential of the charge separation. Thus, HF pressure repells the
electrons, they, in turn, pull out the ions, as a result, the self-consistent density
well becomes formed in which the oscillating field is "locked’. It is just the result
of the modulational instability. Then one can exclude ®:

E”

ed = PHF/2n0 = 5n,~ ~ —ng 167rn0T'




Together with (5), it results immediately in the nonlinear Schrodinger equa-

tion (NSE),
O0E 3 ,0%FE |E|?
“or T DG T g,

This equation has been studied well enough. It is known that it has the
infinite set of integrals of motion. In particular, it means that no turbulence is
permitted to exist within the framework of (7) but only the entirely determinate
nonlinear dynamics. We have not to forget, however, that (7) is not more than
the quasi-steady or essentially subsonic model of the Langmuir dynamics. It
is interesting to note that essentially subsonic limit of Egs (5,6) is the same
NSE. Meanwhile, in one point this system is opposite to (7) since it includes
hydrodynamic description (6) of the background (i.e., ions) which is opposite limit
with respect to the Boltzmann distribution. Respectively, the same effect of the
field localization follows from (5,6) but conditioned by the different mechanism.
To wit, the ion well in this case is the consequence not of the potential hill but of
the potential well through which ions are flowing faster and én < 0 follows from
the continuity of the ion flux. Both cases are presented in Fig.1. Let us turn to
the exact solution describing this effect of localization.

Fundamental object in the strong Langmuir turbulence is called Langmuir
soliton (Rudakov, 1972, see, e.g., [2,3]). It can be obtained analytically starting
from Eqgs (5,6). We will search for this solution in a form of travelling wave:

E=0. (7)

E(z,t) = E(z — vst)ezxpli(kz — dwt)], 0w =w—wpe, Fry00 — 0. (8)

Here v, is the soliton velocity (not acoustic velocity c;,), the frequency shift éw
includes both dispersive and nonlinear effects. Space modulation (k) is inevitable
if vy # 0, as it will be seen below.

It is convenient, for simlicity, to start with substitution of (8) in NSE which
turns out to be splitted in two:

3 3 22 £}
e Defoee + (8w — Swpek®rp, ) E tre i L = 0 (9)
— v, E¢ + 3kwperd Ee = 0 (10)
where £ = = — v,t. (10) immediately results in
‘ ouwt (k)
Vs = .Skw,,er%,e = —d—]E:—— (11)

and that is just the argument for the space modulation. Indeed, the nonlinear
wave velocity turns out to be equal to the group velocity of the Langmuir waves,
hence, v; # 0 = k # 0. The difference within the brackets in the LHS of (9) is
the nonlinear shift of the frequency while the total shift may be presented in the
form 3

= Srh (K — k)
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where ko will be found while solving (9), together with E(¢) dependence:

_ Eo k _ CEQ
" coshkof’ 0T VT

This is the only nonlinear formation stable with respect to the modulational
instability, and consequently, the final result of this instability. Unlike KDV
solitons, it includes HF modulation and depends on two free parameters, viz., Ep
and v, (or k). If, instead of NSE, one solves the full system of Zakharov equations
(5,6), exact solutions will be slightly different from (12) due to the 'relativistic’
effects:

(12)

Ey 3,

E
= = — U, = —7r 2 k2 ko = it
coshkof’ £ =1 — v, dw 27De(k ky), ko

VT

It is interesting to consider the Fourier spectrum of the Langmuir soliton.
Funnily enough, it turns out to be presented by the same function cosh™:
+00 EO

_ ’
bz, t) = Re/—oo dk 2kocosh(mk! [ 2k

13)

)exp[i(k' + k)z — i(w + k'v,)t] =
+o0
= Re /_oo dqFE.exp[i(qz — Q,t)],

T
E — / 2/ 02 Ny = Wpe + 0w+ (g — k)v,. (14
! vBy1 vi/es ecosh[r(q — k)/2ko)’ ‘ pe 9 (g Jvs- (14)

Fourier spectra of both standing and travelling Langmuir solitons are drawn
in Fig.2. At least two their interesting properties should be pointed out:

1) The amplitude of the spectral distribution in the k—space does not de-
pend of Ey but only the spectral width. This is the evident consequence of the
fundamental relation kg o< Ej.

2) (R — Q)/(q — ¢') = v,. This is a manifestation of the nature of the
fundamental nonlinear processes involved into the problem:

[l — I+ s, I+ 1 —(s)— I+ L

Thus, the low-frequency component of the Langmuir soliton (see én in Fig.1) is
the commom beat of all the HF harmonics.

Soliton model of the strong Langmuir turbulence. First of all, let us
emphasize that, unlike NSE, not the infinite number of integrals of motion may
be introduced for Zakharov equations (5,6) but only three, to wit,the number of
quanta:

oo .
o= —— [ |BPds, (15)

4mwpe J-co

the integral of momentum Iy, and the dispersive fraction of the oscillatory energy
(like & — mc? for the particles):

[2 =& — w,,elo. (16)
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As aresult, Eqs (5,6) are not completely integrable and the turbulent behavior
is allowed within the frames of the model based on (5,6).

Eqs (5,6) can describe both modulational instability and essentially nonlinear
dynamics. As the modulational instability is conditioned by the level of turbu-
lence high enough, W/nT > (krp)?, one could expect its final result to be, at
least, W/nT ~ (korp)* where ko is an effective wave number corresponding to
some typical scale of localization, L ~ ky'. If W — nT due to the pumping
(laser or particle beam or something else), effective damping process joins the
game, that is Landau damping since korp — 1 providing the dissipation. Thus,
the flux of energy in the k—space becomes inverted with respect to the weak
turbulence, and all the turbulent scenario acquires the typical features of the
Kolmogorov-like turbulence.

As it has been noticed above, to represent any turbulent behavior, the super-
position principle has to be provided by the model being used. From this point,
Langmuir solitons are looking rather attractive to play the role of new quasipar-
ticles since these coalescenes are restricted in space with exponential accuracy,
hence, the superposition principle can be satisfied with the same accuracy. Be-
sides, except of the amplitude, each soliton has one more free parameter, i.e.,
velocity, that allows to form real chaotic behavior of the resulting field. In ad-
dition, solitons of different amplitudes, have also different width, thus, one of
them seems to be something like quasiclassical well for another, as a result, these
solitons may pass free one through another, like KDV solitons do. After all, un-
like any other wave formation, soliton is stable with respect to the modulational
instability.

Following Eqs (12,13), to wit, ko(Eo) dependence, one readily can see that self
consistent relation W/nT =~ (korp)? is true for any particular soliton. Taken as
averaged in space, < W > /nT may even essentially less than (< kg > rp)?, thus,
to differ weak turbulence from the strong one, it is useful to follow the direction
of the energy flux in the k—space.

The fundamental assumption was made in [1] that this flux in the strongly
turbulent regime was provided by the soliton fusion 'two in one’ in which only
solitons with close amplitudes could take part. Indeed, integral of motion Iy
allows this process (and return process as well since I Ep). In turn, integral
of motion I, allows the process of fusion but forbids the process of decay, ’one in
two’. As for the close amplitudes, this assumption was made to escape the multi
soliton collaps, based on the idea of quasiclassical approach mentioned above.
Both assumptions were confirmed later in the 'computer experiment’ carried out
by Degtyarev et al [5]. Its results added only one but essential circumstance
to the model concerning the important role of the acoustic waves (background
noises) in the dynamics of multi-soliton systems. The qualitative picture of the
coalescence 'two in one’ following from these simulations is presented in Fig.3.

Let us put W to be the average density of the turbulent state and L — the
length of the I-d turbulent plasma system. Then let us introduce the set of



the fundamental states in assumption that in each state the turbulent energy
is distributed between N identical solitons so that IV is the parameter of state.
Their amplitude may be determined by using the equality

WL = NE(N) = %EO(N)NT. (17)

The maximal number of solitons in a state is restricted by the condition of
close packing Ny qz ~ koL, which yields

1 W L
Nma:c > == 1/2'—-
26 ( nT” rp
The minimal number of solitons is conditioned by the Debye scale, or, if there

exists suprathermal ’tail’ of electrons, by some kg oz < 7'51 which determines the
cut off the turbulent spectrum:

(18)

1 W L
min = T k maz’ —1- 19
24nT7‘D( omazTD) (19)

In a result, the turbulent state may be presented in the form of expansion
over fundamental states. Let us define P(N) as the probability of (N) state:

_ An(N)
N

where An(N) is the number of solitons of the amplitude Eo(/N) in the real state.

Hence, P(N) is also the fraction of the total energy provided by these solitons as
& x E()I

P(N) (20)

AE(N) = &(N)P(N). (21)

As a rule, in the computer simulations they follow the energetic spectrum in
the k—space (the same had been studied in the Kolmogorov model). Well, let us
calculate the spectral intensity W) depending on the P(NN) distribution. For this
purpose the expansion (14) will be used. In the turbulent state, all the solitons
have to be placed randomly, with random phases. Thus, the squares of their
harmonic amplitudes are allowed to be summarized:

Wi =

129T? ;N{mnaz) IT2N k
2T / d 3T Nk). (22)

P -2
Le? JN(min) N NP(N)cosh (eZWL

Roughly, for simplicity, cosh™?(z) may be estimated by the step function
O(1 — |z|) which cuts off the integration at

NONI © 2_@

~ g(f) A < Nma,a:-
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Thus, the final result may be presented as

127% N(©)
= N). 23
Wi Le? /N(min) dN NP(N) (23)

In many cases, spectra of strong Langmuir turbulence obtained in simulations
may be well approximated by the function

Wi « k2
which in our representation corresponds to
P(N) = const (24)

thus being an analog of the Rayleigh—Jeans distribution. (In a weakly turbulent
regime, i.e., in the Fourier representation, this distribution degenerates to Wy =
const = 2T /).

Our representation may be without difficulties translated into more usual
treatment, operating not with the probability P(N) but with the averaged num-
ber of solitons of the given amplitude per unit length, i.e., with the soliton dis-
tribution function:

dN

F(Ey) = P(N)N —. 25
(Bo) = P(N)N - (25)
Particularly, 'Rayleigh—-Jeans distribution’ given by (24) becomes transformed
into the following;:

F(Eo) X EO_3

Conclusion. Thus, it has been shown that strong turbulence of the plasma
waves combines two basic properties of the nonlinear dynamics, viz., turbulent
behavior and nonlinear structures. The latters can be modelled in one dimension
by specific two-parametric solitons with HF modulation. Perhaps, this model
can be expanded, in principle. onto some other nonlinear dynamics based on
the interaction of individual objects with some individual properties resulting in
the chaotic behavior that, in turn, results in some macroscopic dynamics. This
dynamics includes the irreversible processes and may be contemplated, in a whole,
as the complicated dynamical dissipative structure.
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Figure captions
Fig.1. Langmuir soliton

Fig.2. Fourier spectra of both immovable (solid line) and travelling (dotted
line) Langmuir solitons

Fig.3. Three stages of the process of fusion of two Langmuir solitons
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