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Abstract

Invariance considerations were introduced i:: Physics by Galileo,
Euler, Lagrange, Hamilton and Jacobi. Emmy Noether’s 1918 formu-
lation best abstracts their dominant role in Modern Physics, where
Einstein ushered in symmetry, first in kinematics (1905) and later
in dynamics (1915). The same sequence recurred in the “Standard
Model”, the ruling paradigm of Quantum Physics (1974), where the
dynamical “Gauge Symmetries” are superimposed upon the basically
kinematical SU(3) “flavor” classification (1961). A surprising feature
is the overall geometrization, imposed by phenomenology rather than
choice, realizing in Physics the Erlangen Program, as launced in Math-
ematics by Klein and Lie in 1872.

1 The Concept.of Symmetry

Symmetry is the name given to a situation in which the evolution of a physi-
cal system remains unmodified, even though we do modify the values of some
variables. These modifications can be active, namely an actual motion rela-

tive to a given frame of reference (either in spacetime or in some configuration
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space) - or passive, i.e. it is the frame of reference which undergoes the mod-
ification, thus bringing about a relabelling of the system’s parameters. The
problem of the hydrogen atom, for instance, has spherical symmeiry: there is
just one particle - a proton - in the nucleus, which can thus be assumed to be
spherical, and the magnitude of the electrical (Coulomb) potential - in which
the orbiting electron finds itself - depends only on the distance from that
central proton, not on the direction (in polar coordinates, V(r) rather than
V(r,#,6)). The nondependence on 8, ¢ is a statement of invariance, since we
can vary the values of these angles without affecting the system’s dynamical
evolution. Another point of view with respect to the passive mode is due
to E. Whittaker (1], who dubbed such invariances Postulates of Impotence,
since one cannot select a preferred reference frame.

It is natural that the concept of symmetry should dominate physics. In-
deed, the scientific method is based on the assumption that there are laws,
i.e. rules that have to be obeyed by material bodies, with no “preferences”.
If A and B are equal before the law, then the ;;hysical evolution will be the
same if we replace A by B. Note that saying that they are “equal” before a
given law means that the relevant variables are the same: for Coulomb’s law,
for instance, this would imply that A and B carry equal electrical charges and
are at the same distance from a “central” charge C. [Note that in classical
physics, this was always true, but in quantum physics it is not always so. Cer-
tain particles, obeying (so-called) “Fermi statistics”, display “individuality”,
so that no measurable feature can be said to be “irrelevant”. Exchanging A
and B, in these cases, does entail physical consequences]..

Sometime, although the dynamical evolution is not unaffected by the
modification of certain variables, there is some feature which does remain
unaffected. Such a partial symmetry is termed a regularity. In the phe-
nomenological exploration of a new domain, the discovery of regularities is
the basic stage. These regularities may then provide clues to the structural

and dynamical paradigms of the new domain - and certainly provide a way
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of testing them, since the paradigms have first and foremost to reproduce the
regularities. The first clear such example in post-medieval physics is provided
by Kepler’s laws: all three laws make statements about features that remain
unaffected under active transformations of the physical variables. In the first
law, the identification of the elliptical shape of the planetary orbits implies
the invariance of the summed distances from the two foci (the ellipse’s defini-
tion as a locus) even though we modify the.planet’s position along the orbit;
the second law is an explicit such invariance statement, for the areas swept
by the radius-vestor to the planet during equal time intervals, at different
points along its trajectory; the third law does the same for a certain ratio,
upon replacement of the planet by another (resulting in a different orbit),
i.e. transforming the mass, position and velocity.

Mathematically, symmetries and regularities involvg algebraic consider-
‘ations. What is required is an evaluation of the effects of transformations
(discrete or continuous) on a set of variables; this is precisely the content
of the theory of transformation groups. In his preface to the second edition
of his book Group Theory and Quantum Mechanics, Herman Weyl condoles
[2] with the disappointed physicists, who were hoping that “the group pest”
would soon be over. Weyl explains why some groups (such as the Rota-
tions or the Lorentz group) are there to stay. Yet even Weyl did not dare
imagine the extent to which Group Theory would come to dominate the
field by the end of the Century [3]. Physics as a user is continuously hav-
ing recourse to the great classification theorems - Cartan’s of the Simple Lie
Algebras and Groups [4], that of the Simple Finite Groups (the end result
of a weighty collective effort, published in the Seventjes [5]) and that of the
Simple Supergroups (achieved by V. Kac in 1975 [6]) - and picking from them
appropriate answers. As a matter of fact, physics is making use of additional
algebraic tools, in categories that have not yet been catalogued and classified
- Quantum Groups [7), infinite structures such as diffeomorphisms|8], or the
Kac-Moody algebras [9)], etc.



2 Emergence of the Action Principle

Newton wrote down laws of physics which could provide a full description
of the phenomena he was studying (including the reproduction of Kepler’s
regularities). He did not involve himself in derivations from some “deeper”
first principles. In addition, although interested in scripture and religion
(devoting much of his time to scholastic or cabalistic studies, in his later
years), he sems to have taken care not to let the lattier impinge upon his sci-
entific work. Some of Leibniz’ philosophical ideas, on the other hand, appear
to have had some impact on the development of physics - especially in this
context of symmetry, which interests us here. Leibniz, like Bishop Berke-
ley, did not believe in absolute space or absolute time; he stressed relativity,
l.e. the unphysical standing of the frames of reference, i.e. symmetry in the
_passive mode. [Note that he had however nothing to offer as a replacement
for what Newton managed to derive, using absolute space and time. It all
had to wait for Einstein. Some ideas cannot help, even if they are correct,
until “their time has come” ]. Leibniz’ other surprisingly fruitful idea - much
ridiculed as a philosophy, witness Voltaire’s “Candide” - was that “this is
the best of all possible worlds”. Indeed, Dr Pangloss would rightly be re-
garded as extremely naive, nowadays. However, seen from the point of view
of methodology, the idea is fruitful indeed. Remember that Leibniz’ version
of the Calculus emphasized its application to the finding of a function’s ez-
trema - witness the title he chose for his book (1684) on the Calculus: “Nova
Methodus pro Maximis et Minimis”. Mathematically, the phrase “the best of
all possible worlds” implies the existence of some “goodness” function, which
could be evaluated for any possible world, with the present one scoring high
and representing a maximum of the function.

This was the philosophy behind the development of the Calculus of Vari-
ations by the brothers Jakob I and Johann I Bernoulli, with the latter being

particularly influenced by Leibniz. The program achieved its useful form of



a “Principle of Least Action” in the further work of Euler, Maupertuis and
Lagrange (not the “best” of worlds, just the “coziest” - least action..) around
1750. In the XIXth Century, Hamilton and Jacobi presented an alternative
formulation. Mathematically, the action function I was given by an inte-
gral over a path, which should not change (i.e. a vanishing derivative) under
some parametric modifications of that path. The integrand is the Lagrangian
function L = T — V, T the kinetic energy and V the potential energy. This
is equivalent to evaluating the variation of the action function and putting
it to zero 61 = 0. Although the ingredients (the variations of the canonical
variables and of their time-derivatives) are Algebraic, the final “cooking” is
done in the calculus (of variations..).

Note, however, that from Leibniz to J acobi, the developers of the Principle
.of Least Action were not aware of the algebraic aspects of their creation, due
to the relative lack of sophistication of the variables, in Classical Mechanics.
Had they been dealing with the nuclear interactions, for instance, they would
have realized what they lacked and might even have invented Group Theory,
just as Newton invented the Calculus. Instead, it was done in 1825-30 by two
very young men, a Paris highschool pupil, Evariste Galois and a Norwegian
youth, Niels Henrik Abel, both of whose papers kept being mislaid (or thrown
away?) by the greatest mathematicians of the age, apparently blind to the
potentialities of this emerging branch of mathematics.

The advent of Quantum Mechanics further extended the applications of
the Action Principle. Schroedinger’s wave-function is closely related to the
action and Feynman’s path integral version of the Quantum formalism is
inspired by the Principle of Least Action. Dirac found an elegant adaptation
of the Hamiltonian formalism to the Quantum domain.

Up to this point we have not had occasion to mention geometry. It enters
the story with the 1872 launching of the Erlangen Program [10] by Felix
Klein, geometrician, in the presence of Sophus Lie, algebraist. Together, they

had conceived this program in 1869, as students in Paris, after listening to
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Camille Jordan expositing Galois’ work and to Gaston Darboux’ presentation
of Gauss-Riemann differential geometry. The Erlangen Program suggested
using symmetry as a guide to geometry and applying their combined strength
as a tool in the interpretation of mathematics in general.

3 Relativity: Kinematical and Dynamical Sym-
metries

We now come to the XXth Century. It was ushered in by Lord Kelvin’s
two dark clouds [11], namely the null result of the Michelson Morley exper-
iment and the inadequacies of the thermodynamical equipartition theorem
in explaining the specific heats of solids. Einstein and Planck, respectively,
cleared these clouds, thereby launching Special Relativity and the “old” Quan-
tum Theory. Whether or not Einstein was aware of the Michelson-Morley
experiments’ paradoxical results, he was realizing and focusing on the inad-
equacy of the Galilean invariance of Newtonian Mechanics, in dealing with
Maxwell’s Electrodynamics. Lorentz and Poincare had also encountered the
problem but did not cross the “Aetherial” Rubicon. There were two concep-
tual obstacles which deterred them: the aether (with its peculiar solid-like
properties) was necessary for- the propagation of light and electromagnetic
radiation (all transverse), and tinkering with time countered one’s inborn
intuition. Though he was not a mathematician and knew no Group The-
ory, Einstein realized the requirements of consistency and came up with a
theory whose almost entire content consists in a symmetry requirement, that
of the Loremtz or Poincare groups (which were missed by both Lorentz and
Poincare..) Einstein’s June 1905 Relativity paper [12a] does away with the
aether and constrains the physical vacuum by the requirement of symme-

try under these groups (equivalent to the more common statement of the



invariance of the velocity of light) - with all the non-intuitjve consequences,
especially about the relativity of simultaneity. 1 have conjectured elsewhere
that in doing away with the aether, Einstein was encouraged by his very
recent results on the photo-electric effect (March 1905) based on his having
physically extended Planck’s idea, treating light as a localized particle and
thus freeing himself from the Maxwellian wave aspect - which had brought
in the aether, originally. We know from Einstein’s later stubborn struggle
against Bohr’s abstract application of Quantum Mechanics . how reluctant
he was to forego an intuitively meaningful picture. I believe he would have
hesitated to remove a feature which was supposed to be essential to the prop-
agation of radiation - had he not been under the impact of the new quantum
particle-like approach to light.

The Special Theory of Relativity is thus the first major physical theory
‘which is built around a symmetry principle. This became more clear when
Einstein’s former teacher at the Zurich ETH, the geometrician Hermann
Minkowski, in his speech to the LXXXth Congress of the “German Society of
Nature Researchers (=Scientists) and Physicians” (Cologne, 1908), explained
that Einstein’s discovery simply meant that the local geometry of space and
time, rather than being Galilean (Euclidean 3-space x one-dimensional time)
was that of a pseudo-Euclidean 4-manifold with a pseudo-Pythagorean met-
ric,

(“Interval”)? = (length)? + (width)? + (height)?
‘ — (time duration x velocity of light)?
where time is measured in units of length, by evaluating the distance that
would be travelled by light during this time. [“pseudo” indicates a minus
sign. Note that one could also treat spacetime as Euclidean, provided time
be measured in imaginary units (the square-root of a negative number)].

Similarly, the famous me? is the invariant pseudo-Pythagorean magnitude of



energy and momentum,

~(mc*)? = (momentum in“c"direction x velocity of light)?
+ (momentum in“y”direction x velocity of light)?
+ (momentum in“z"direction x velocity of light)?
— (energy)?

so thet mc? coincides with the rest energy (when all momenta vanish). Here
too, the velocity of light plays the role of an exchange rate, in going from
spatial to temporal units (except that here it is in the opposite direction, for
reasons of dimensionality (energy is momentum x velocity).

In the beginning, Einstein was not impressed by Minkowski’s geometrical
interpretation. Within a short time, however, he adopted it enthusiastically.
He had tried to evaluate the effect of a gravitational potential on light - say
a beam from a distant star passing close to the sun. Special Relativity and
"Quantum Theory, when taken together, implied that the mass appearing in
Newton’s law of universal attraction is really the energy-content mc? of that
mass. For a photon, it would therefore be the energy £ = hv in Planck’s
Quantum Theory which would enter Newton’s formula. The beam would
thereby be somewhat deflected and in addition, the speed of the light in that
beam would accelerate during the approaching phase and decelerate when
leaving the sun’s neighborhood. Einstein mused - with the speed of light
having just now been promoted by him to the status of a universal invariant,
how could it suddenly vary so easily? The geometrical interpretation, on the
other hand meant that the presence of a gravitational field modifies the local
geomelry. Einstein quizzed his friend Marcel Grossmann, who had become
a geometrician. Marcel explained that changes in the coeflicients of the
various terms in Pythagorean formulae correspond to the effects of curvature
- and were studied by Gauss and Riemann. After several vears of work,
partly with Grossmann, Einstein arrived in 1915 at his General Theory of
Relativity [12b]. In 1905, when he produced Special Relativity. he had been

in competition with Poincare, one of the two greatest mathematicians of the
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day. This time, it was the other one, David Hilbert, who had recently joined
the race (after Einstein had “cleared the decks”) - and they arrived more or
less at the same time.

In the General Theory of Relativity, the physical symmetry is extended
to non-inertial frames. Geometrically, curvature means that if we draw the
frame-axes (x,y,z,ict) at two points X and X’, they will not be parallel. If
we want to preserve the original orientations while we move from X to X’
(this is known as parallel transport), we shall have to use a “corariant deriva-
tive”, containing a connection. The connection is a compensating field which
“remembers” the orientations of the axes in the original frame and can there-
fore undo the effects of curvature. The information about the gravitational
field is thus coded into several functions - the metric (the coefficients in the
Pythagorean formula, generalized to describe curved spacetime), the frames
(describing the changing orientations at differet points) and the connections.
In conventional General Relativity, which corresponds to a Riemannian ge-
ometry, they are all interdependent and the assignment of a metric automat-
ically also fixes the frames and connections. In more general geometries -
which may be present in the very small, when spacetime is also quantized,
according to present thinking - the number of degrees of freedom of the grav-
itational field is larger and all three functions may be independent [13,14]

Returning to the physics, we have here the first example of a dynami-
cal symmetry, i.e. one which holds throughout spacetime, even though the
frames are not parallel when at different points. The existence of a dynam-
ical symmetry requires the geometry to contain a connection field, ensuring
parallel transport. In GR this is one of the roles of the gravitational field.
Roughly, the equations of the theory are built according to the scheme

Geometry (curvature, metric, connection, frames) = Sources (energy, mo-
menta, spins)

l.e. the presence of matter induces geometrical fields. One feature of a dy-

namical symmetry is its universal coupling. In General Relativity, this is the
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Principle of Equivalence. Galilei had already discovered that all bodijes fall
with the same acceleration and ensuing velocities in the earth’s gravitational
field. Newton used the same concept of mass in his Second Law (Inertia) as
in his Law of Universal Gravitation. In Finstein’s theory this is structural:
the gravitational field (the Lh.s. in the above schematic equation) couples to
amd is induced by quantities defined by kinematical symmetries (the r.h.s.).

Moreover, these quantities are conserved..

4 Emmy Noether’s Two Theorems

Quantum theory enhanced the standing of the action (now an operator rather
than a function) since Planck’s quanta are quanta of action. The action is
thus what the generalized substance of the world is made of, it should be
dimensionless in a “natural” system of units (since we just count quanta);
moreover, conjugate variables are those variables whose product carries the
units of action (or is dimensionléss in natural units) - this is the effective con-
tent of Bohr’s “Principle of Correspondence”. Thus, if location and momen-
tum are conjugate, measuring the one affects the other - this is the content of
Heisenberg’s Uncertainty Relations. Similarly, measuring the energy affects
time - just as a precision measurement of time will affect the energy. Thus,
if we use a symbol P to repfesent the measurement of momentum (which
affects location), we may also think of P as representing a change of location,
a displacement. Similarly, taking the letter H (for Hamilton) to represent a
measurement of energy, we may also use H to represent a displacement in
time (i.e. the run of History, another interpretation of the H).

Emmy Noether was a student of Felix Klein and a collaborator of Hilbert
at Goettingen [10]. After the discovery of General Relativity and starting

from the Action Principle, , Noether proved two key theorems relating sym-
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metries to conservation laws.

Let us write down an “equation”,

HeQ=0

Reading this “equation” from left to right, we have a conservation law for
an observable represented by Q. Indeed, it states that H, the passage of time
(=History), as applied to the measurement of the observable Q, has no effect
(=0). Thus Q is unaffected by the passage of time - it is conserved. But we
can also read the equation as in Hebrew, from right to left. Now remember -
measuring Q modifies some variable g, conjugate to Q (i.e. Qxq = action),
so we can think of the symbol Q as describing the action of changing ¢. Thus,
the Hebrew-like reading of the equation says “changing q has no effect on
the History of the system”. This is an Invariance Principle, a symmetry.
‘The inverse is also true: a symmetry corresponding to the system being
invariant under variation of some variable q will induce the conservation
of an observable Q conjugate to Q. Emmy Noether’s theorem also gives a
precise algorithm for the construction of Q, given q and the Action (or the
Lagrangian) functions, in terms of the canonical variables of the theory.

Noether’s second theorem treats the case of a dynamical symmetry. If
the variable q is taken to be a function of the location, ¢ = g(z), the theory
has to contain a connection acting locally and compensating for the loss of
parallelism between relevant sets of frames and for the presence of curvature.
The connection is coupled to the relevant conserved current. Physics-wise,
this is an interaction with that matter current and charge: the presence of
such a charge induces a field propagating from it, the curvature.

Special Relativity, taken as an application of Noether’s first theorem, links
the invariance of the action under the Poincare group to the conservation of
energy-momentum and generalized angular momentum. General Relativity

is then an example of a connection field (the gravitational field) coupled to
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that energy-momentum’s conserved charge-current density.

5 Unitary Symmetry and the Standard Model

Symmetry is an intercultural concept and the aesthetic aspects of Einstein’s
theory have captivated three generations of physicists. The inherent bequty
of this geometrical theory - the fact that it induces in the minds of the math-
ematically literate the same feelings that one experiences when looking at
a Michaelangelo sculpture or listening to a Bach fugue - has attracted hun-
dreds or perhaps thousands to do research in physics. I was one of those
and was very disappointed, upon entering the Quantum domain, to discover
.that symmetry was playing a vary minor role - and especially that geometry
played no role at all - in the Strong, Weak and Electromagnetic Interactions,
as of 1960. Fifteen years later, the picture had changed drastically. The
whole of known fundamental physics is now g.eometrical, in two “blocks”.
Gravity, on the one hand, has still not found its Quantum version and is as
yet a geometrical theory (still Einstein’s, highly successful “in the large”, i.e.
at the macroscopic level) limited to the classical (=nonquantum) domain.
On the other hand, there is the (so called) Standard Model, describing all the
rest (Strong, Weak and Electromagnetic, the latter two in a Unified struc-
ture). The Standard Model is also entirely geometrical and covers the entire
quantum level as well as the classical (mostly relevant in electromagnetism).

The change came in as the result of experimental facts, rather than from
the theoreticians’ preferences. The Strong Interactions were discovered in
1932 (with the discovery of the neutron) and the Weak in 1947 (when the
pion/muon confusion was cleared up). Neither seemed to have anything to
do with dynamical symmetries; only Quantum Electrodynamics was shown
by Weyl in 1929 to relate to such a symmetry, with the electric charge Q
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generated by the theory’s invariance under a local change of q(x) - in this case
the complex phase introduced by Quantum Mechanics. The Schroedinger
amplitude v(z) is complex, but the relevant physical quantities depend only
on the probability ¥*i, in which the phase has cancelled out. That phase
is an angle in the Argand diagram for complex numbers, and changing it
involves rotations SO(2) in the plane, a group whose universal covering is
U(1), i.e. unitary transformations in one complez dimension, an “Abelian”
group [ rotating by an angle a first and then by § has the same result as
doing it by f first and then «; this is an Abelian group. Rotations in 3
dimensions are non-abelian, i.e. the result dépends on the order.].

Weyl’s construction led C.N. Yang and R.L. Mills in 1953 to construct a
generalization to any nonabelian Lie group, as an exercise. The model was an
.elegant application of the ideas in Noether’s second theorem and looked like a
pilot model for General Relativity, which is why R.P. Feynman started in 1956
working on its quantization - a program which was successfully accomplished
by 1971 by ’t Hooft and others. .

In 1957, two independent sets of ezperiments showed that both the Strong
and the Weak Interactions involved conserved currents, i.e. symmetries.
Moreover, first cosmic rays and then particle accelerators ushered in a flood
of new particle species, mostly hadrons, i.e. particles (suh as the proton or
pion) which experience the Strong Interactions - as against leptons (such as
the electron or neutrino) which do not. The number of different hadrons
reached the hundreds. It fell to me [15], early in 1961, to discover the order
in this mess - identifying the regularities a la Kepler or as was done for the
chemical elements by Mendeleev with his Periodic Chart. Here, it was the
nonabelian group SU(3) (nicknamed “The Eightfold Way”) which provided a
classification of the hadrons. I was also able to predict the existence of as yet
undiscovered particles which would fill some empty boxes in the classification.
One such case[16], which carried the day for SU(3), was the Omega-minus,

discovered early in 1964 (a particle with 3 units of “strangeness” - one of the
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eight “charges” of SU(3), relevant to the Weak decay modes).

The next stage was structural. Why SU(3)? It took some fifty years
from Mendeleev’s table to its explanation by atomic structure (Rutherford,
1911). Early in 1962, I raised the possibility [17] that SU(3) might result from
compositeness, with 3 basic “bricks” as constituents (now known as quarks
u,d,s), and hadrons being made of either 3 quarks or a quark-antiquark
combinations. M. Gell-Mann, who had independently found SU(3) in 1961,
formalized the quark idea in 1963 [18] (also giving it its name). By 1969,
experiments had confirmed the presence of (confined) quarks in protons and
neutrons.

Moreover, it was found that quarks carry two sets of SU(3) charges, nick-
named flavor and color (i.e. each of u,d, s can appear in 3 “colors”). Flavor
is relevant to the classification and provides a good “phenomenological” dy-
namical model for the Strong Interactions. It also contains the weak and
electric charges. Color [19] is the origin of the interquark forces, binding the
quarks into hadrons - and is thus indirectly responsible for the inter-hadron
forces, namely the Strong Interactions. The Unified Weak and Electromag-
netic Interactions [20] involve a reducible group SU(2)xU(1), a symmetry
broken “spontaneously”. Together with “QCD” (Quantum Chromodynam-
ics) the interaction induced by the color charges [19], they make up the
Standard Model . The theory is a Yang-Mills geometric (“gauge”) theory
based on SU(3)®[SU(2)xU(1)] as a local symmetry, entirely in the spirit of
the Erlangen program.

Theoretical speculations have raised a variety of geometrical models in
which gravity would be unified with the Standard Model, in the spirit of
Einstein’s unsuccessful quest in his later years. One of these models - 11-
dimensional (“N=8") Supergravity - appears recently to have scored a point.
After having raised great hopes in 1976 and then having been discarded
by 1984, it has reemerged in 1994, out of the Membrane extension of String

Theory, known as “M-theory” (for “mother” theory?), a model with some ad-

14



ditional alluring symmetry features, known as dualities. However, M-theory
itself is still very far, both from having anything to say that might be tested
experimentally and even from a derivation from some clear and coherent ba-
sic principle. Perhaps, as in many other (;ases, theorists will get some new
clues from experiments, when the LHC accelerator at CERN will hopefully
operate around 2005.
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