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Abstract

Understanding the organization of complex systems is a challenging problem in mod-
ern science. The Great Red Spot of Jupiter is a striking example of

flow organization in a turbulent background. Robust vortices also persist in the
earth atmosphere (e.g. the stratospheric polar vortex), or ocean, with implications in
environmental issues. It has been proposed that similar vortices occured in the proto-
planetary nebula, and contributed to the dust concentration at the origin of planetary
formation.

Two processes could rapidly destroy an atmospheric vortex: turbulent mixing with
the surrounding fluid, or the emission of Rossby waves (sustained by the Coriolis force),
and we must understand why both processes are inhibited in robust vortices. The theory
of Rossby solitons can explain the absence of wave emission (cf. Nezlin’s talk). We
rather address the problem of robustness against turbulent mixing. This robustness is
a genuine property of two-dimensional turbulence, and has been found in a laboratory
experiment performed in a rotating tank, showing the persistence of a single vortex in a
highly turbulent shear.

We propose an explanation of this persistence in term of statistical mechanics. It
relies on the conservation properties of the two-dimensional Euler equations, describing
the inviscid flow: the vorticity of each fluid particle is conserved, but mixes with the sur-
rounding fluid. The total energy is also conserved, and this constraint generally prevents
complete mixing, explaining the persistence of a non-trivial flow structure. This robust
equilibrium flow structure can be predicted by maximizing a mixing entropy.

A similar idea has been previously proposed by Lynden-Bell (1967) to explain the
radial distribution of star density in galaxies, by a kind of turbulent process, the ”rapid
relaxation”, describing the stellar system as an incompressible fluid in phase space. We
discuss the analogies with two-dimensional turbulence.

In conclusion, old ideas of statistical mechanics can be extended beyond their usual
field of application, to predict robust organization for two-dimensional turbulence or
stellar systems. Although the system is chaotic, imprediscibility is limited to fine scale
fluctuations, while the large scale structures of interest remain highly predictible.



Extended text (preliminary draft)

From water streams to large weather systems, turbulence occurs in nearly all fluid
motions. In spite of such a turbulent motion, more or less organized vortices are often
observed. This phenomenon is still poorly understood, but significant progress have been
recently realized in the particular case of two-dimensional turbulence, i. e. when fluid
motion is restricted to a plane rather than in the ordinary three-dimensional space.

A plane motion is more simple to study theoretically than a three-dimensional flow.
This case occurs more frequently than might be expected, for instance when the fluid is
contained in a rapidly rotating tank, or when the fluid is electrically conducting (liquid
metal or plasma) and submitted to a magnetic field. Confining the fluid to a thin layer
may also contribute to maintain a plane flow. The study of atmospheric or oceanic
motion are indeed important applications of two-dimensional theories, when the fluid layer
thickness is negligible with respect to the considered horizontal scales. Spiral galaxies are
also flat systems, and can be approached by two-dimensional fluid model (cf. papers by
Nezlin et al. and by Fridman et al.). The proto-planetary nebula is a similar system from
the fluid mechanics point of view, and the presence of organized vortices would have an
important role in the concentration of dust at the origin of planetary formation (Barge
and Sommeria, 1995).

In order to simplify the study of two-dimensional turbulence, one often suppose that
the flow is incompressible. In this case, the flow dynamics is entirely determined by a
quantity defined in each point, called vorticity, which measures the rotation rate of a
local fluid element (it is the curl of the velocity). The vorticity is attached to each fluid
particle and conserved in its motion (in the absence of viscous effects, which is often
a good approximation). A vortex is then characterized as a region of high vorticity.
This description of an elementary vortex is however not sufficient to understand the
organization of vortical systems. Indeed, one generally observe many vortices interacting
in a very complex way, and stirred into filaments. However at the end of this process,
the flow again organizes in a few simple persisting structures, like a big unique vortex or
a vortex pair.

Various experiments and numerical simulations have displayed this organization pro-
cess. Sommeria et al.(1986) have realized an experiment with a rapidly rotating water
tank, with the purpose of reproducing structures analogous to the Great Red Spot of
Jupiter. In the experiment, the flow is practically two-dimensional, due to the effect
of the Coriolis force in a rapidly rotating fluid. Vortices are permanently produced by
sources (water inlets) and sinks (water outlets) flush in the tank bottom, maintained by
a closed circuit pumping. The pumped radial motion, combined with rotation, produces -
a fluid jet opposite to the rotation direction (in the frame of reference rotating with the
tank).

For a sufficiently energetic jet, a unique vortex emerges. New vortices rotating in the
same direction are permanently generated by sinks, but eventually merge with the main
vortex. The sources produce vortices of opposite sign, but these are rapidly disrupted
by turbulence. These properties are similar to what is observed in J upiter’s atmosphere,
where convective plumes could excite vortices like the sources or sinks of the experiments.

How can we explain the apparition of a robust vortex amidst a flow which is itself
turbulent. The turbulence seems here to play an important role, and this has suggested



a statistical approach to understand the phenomena.

In 1941, Kolmogoroff has proposed a theory of turbulence in which the fluid kinetic
energy is successively transfered, in cascade, toward smaller and smaller scales, where
viscosity eventually dissipates energy. However this theoretical scheme does not apply
to two-dimensional flows; one can indeed prove, from the equations of motion (the Eu-
ler equations) that the process of energy degradation in cascade is forbidden, so that
the kinetic energy remains constant, if viscosity is weak. This absence of energy dissi-
pation suggests a model inspired from equilibrium statistical mechanics to describe 2D
turbulence.

The first attempt in this direction was due to Onsager (1949). His idea was to approach
the vorticity field by an idealized system made of a large number of point particles where
vorticity is confined. In other words, instead of a continuous vorticity distribution, only a
finite number of points have a non-zero vorticity. These point vortices interact like a gaz
of particles. The equilibrium state reached by this system after a sufficient time can be
then studied by methods of statistical mechanics. Onsager has thus shown that, under
certain conditions relative to the energy of the vortex gaz, the like sign vortices have
a tendency to cluster. Onsager then obtained an explanation for the robustness of the
large vorticity structures observed in nature. Specific calculations of equilibrium states
has been made possible using the mean field approximation of Joyce and Montgomery
(1973), quite justified in such hydrodynamic problems. Then the vortices interact only
in a collective way: each vortex is not sensitive to interactions with individual vortices,
but only to a local field (the stream function) induced by all the other vortices.

However vorticity is in reality a continuous field (except in the particular case of
superfluid helium), and the approximation of such a field by a cloud of point vortices
leads to inconsistencies after a long evolution time. The approach developped by Robert
(1989) (see also Robert and Sommeria, 1991) directly deals with the continuous system,
and thus allows to eliminate such inconsistencies (Similar ideas have been independently
proposed by Kuz’min (1982) and Miller (1990)). To develop a statistical mechanics
equilibrium, one has to characterize the macroscopic state of the flow, once equilibrium
has been reached. For a classical gaz, for instance, the macroscopic state is characterized
by pressure and volume. How to define it in two-dimensional turbulence?

One can give to our approach the following intuitive hint. Suppose that at the initial
time, the vorticity is non-zero only in some region of the fluid, a patch where vorticity
is uniform and has a given value, say a. As time goes on, this patch will deform in a
complex way under the effect of turbulence. However its area will remain unchanged since
the fluid is incompressible, and vorticity will not change, as each fluid particle preserves
1ts vorticity in an incompressible 2D flow. One characterizes then the equilibrium state
reached after a sufficiently long time by giving, at each point of the fluid domain, the
probability that the measure of vorticity at that point gives the value a. This probability
field is the macroscopic state of the fluid. Like in classical statistical mechanics, the
macroscopic state which is actually observed is the one with a maximal entropy, the
entropy being the number of microscopic states compatible with the given macroscopic
state.

How are these microscopic states defined? The probability of measuring a vorticity
a in a very small fluid area is denoted p, this means that in this element the area with



vorticity a occupies a fraction p of the element. One can then calculate the number of
ways of dispatching this vorticity if one imagines that the area element is partitioned
in equal compartments. One just need to choose the number of way of choosing the
compartments of non-zero vorticity. Integrating the result over the whole fluid, one gets
a so-called mixing entropy, which measures the number of ways of mixing vorticity.

The maximal vorticity would naively correspond to a complete vorticity mixing, which
would appear uniform with a sufficiently coarse mesh. In reality, the conservation of the
fluid energy provides a constraint, and one has to determine the state of maximal mixing
compatible with these constraints. One then notice that the uniform spreading of vorticity
1s generally impossible: this explains that we often observe, at equilibrium, a localized
vorticity structure. This statistical theory of 2D turbulence has the advantage of being
compatible with the dynamics of the system: the statistical equilibrium corresponds
indeed to a steady flow which transports the fluctuations without further evolution. The
practical determination of the statistical equilibrium is not straightforward, but efficient
numerical algorithms have been developed, involving a relaxation towards equilibrium
while keeping constant the conserved quantities (Robert and Sommeria, 1992, Whitaker
and Turkington, 1994).

Sommeria et al. (1991) have tested the theory by numerically solving the evolution
equations with high spatial resolution. A band with uniform vorticity is chosen as the
initial state, separating two regions with two opposite velocities (Fig. 2). Such a band
is unstable and rolls up in vortices, amplifying any small perturbation that is initially
introduced. We notice the roll up of vorticity in complex filaments, illustrating the mixing
process. The vortices successively merge, and if the fluid domain were unbounded, this
process would repeat itself indefinitely, forming larger and larger structures. Here the
evolution is limited by introducing a condition of periodicity (the velocity at the left end
is equal to the velocity at the right edge), and a stationary vortex is eventually obtained:
this is the equilibrium state. For an inviscid fluid, this equilibrium state would be a
very fine mosaic made of the initial vorticity levels 0 and a. However the weak viscosity
initially present will smooth these fluctuations and lead to a continuous vorticity field.
One finds then that the theoretical relationship between vorticity and streamfunction
(from which velocity is derived) is well satisfied (Fig.2B).

However this agreement with theory is only observed in vorticity containing regions,
with intense stirring, typical of the vortex merging process. The system does not quite
reach the global statistical equilibrium, predicted for mixing in the whole fluid domain.
An equilibrium state restricted to an active subregion, surrounded by irrotational flow,
i1s rather observed. Such a restricted equilibrium state can take the form of monopoles or
dipoles, or tripoles (Robert and Rosier, 1997, Chavanis and Sommeria, 1997).

In many cases of interest, the flow does not freely evolve toward a final state, but is
instead permanently driven. Some energy dissipation also takes place, but it is often a
slow process, so that flow organization by inertial stirring takes place. This is the case
for the Great Red Spot of Jupiter, or the above mentioned laboratory experiments in
the rotating annulus. We therefore expect that turbulence drives the system towards
statistical equilibrium. Adapting the ideas of linear non-equilibrium thermodynamics,
we have therefore proposed equations of relaxation towards equilibrium (Robert and
Sommeria, 1992, Robert and Rosier, 1997). Such equations provide a general frame for



modelling the statistical effect of ”subgrid scales” in the numerical simulation of 2D fluid
systems. Some kind of turbulent diffusivity is generally used for that purpose. and drives
the system towards a stale of rest. Our turbulence models instead drives the systemn
towards the non-trivial statistical equilibrium, which is more realistic {for 2D turbulence.
This approach could have interesting applications in climate modelling, in particular for
the oceanic motion, for which the statistical modelling of the small scale, unresolved,
cddies is a critical issue. Applications to a simplified, two-dimensional, ocean circulation
model have been developed by Kazantsev et al. (1997). The same ideas could be extended
to more realistic models, including the vertical structure

The same ideas can be also applied to the dynamics of galaxies. Fivst, spiral galaxies
contain & gaz component, in which geant vortices could be generated and emit spiral
arms. The set of stars has also a kind of fluid behavior, but in the six-dimensional phase
space, involving both velocity and position components. The flow is incompressible in this
space (a consequence of the Liouville theorem), and conserves the phase space density, like
vorticity in 2D fluid dynamics. For a large system like galaxies, the close star encounters
are very rarc, and the stars rather interact in a collective way. Each star feels the gravity
field produced by the mass density (integral over velocities of the phasc-space density)
averaging the effects of individual stars. This is analogous to the gencration of the strcam
function by the vorticity field. The Vlasov equalions which formalizes these ideas have a
close analogy with the 2D Euler equations of fluid mechanics.

The so called elliptical galaxies have a quasi-spherical structure and are weakly in-
fluenced by the gaz component. They are therefore relatively simple example of stellar
systems to study. They reveal a universal radial density structure, which fits well with
a statistical equilibrium statc. The density decreases with altitude, like in a planetary
atmosphere (but with & non-uniform gravity field). In a gaz, molecular collisions are
required to reach such an cquilibrium. This is not possible in elliptical galaxies. as col-
lisions (in fact close encounters) are very rare. and reaching statistical equilibrium by
such binary interactions would require much more than the age of the universe. To ro-
solve this paradox, Lynden-Bell (1967) has proposed that equilibrium is rather reached
by a collective process of "rapid relaxation”. This is like a turbulent mixing in phase
space, while the effect of collisions is like molecular diffusion. There is a close analogy
hetween this rapid relaxation and the relaxation towards statistical equilibrium in vortex
systems. Developing Lhis analogy could lead to an understanding of the classification of
the observed galaxy structures (Chavanis et al. 1996).

In conclusion. old ideas of statistical mechanics can be extended beyond their usual
field of application, 1o predict robust organization for two-dimensional turbulence or
stellar systems. Although the system is chaotic, imprediscibility is limited to fine scale
Auctuations, while the large scale structures of interest remain highly predictible,. We
are seeking to apply these ideas for modelling astrophysical and geophysical systems.
averaging the fine scale fluctuations, while preserving the robust properties, associated
with conservation laws and kinetic constraints. This apprach is particularly interesting
for clirnate madclling.

1t involves fairly gencral principles, and we may consider applications to other systems,
heyond fluid mechanics or stellar systems. A first ingredient is random motion of many
particles. This random motion is however influenced by some global constraint, with
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a mean field expression. "The particles do not interact with a few partners, but rather
contribute in average 1o a local quantity (the stream function or gravity potential), which
in turn influences the particles in a self-consistent way. This approach is quite standard in
usual statistical mechanics, involving a set of particles, The aim of our work is to extend
it to the case of a continuous medium. involving fluid parcels rather than individual
particles. The transport with volume conservation by fluid motion then plays an essential
role for a precise justification of the theory. It is not clear whether one can replace such
properties in non physical systems, like encountered in economy.

Figure caption

~ Fig. 1. Example of self-organized vortices emerging in two-dimensional shear flows
A) The Great Red Spot of Jupiter; B) In a rotating tank with water.
Fig. 2: Test of the stalistical theory by direct numerical computations of a 2D shear
flow.
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= CFERIISIANCE DES TOURBILLONS
A DEUX DIMENSIONS

DES AVANCEES THEORIQUES PERMETTENT DE MIEUX COMPRENDRE
LA TURBULENCE BIDIMENSIONNELLE. LA PERSISTANCE DE TOURBILLONS COMME
LA TACHE ROUGE DE JUPITER DEVIENT MOINS MYSTERIEUSE,

Figure 1. Dens les
écovlemants turbulents, on
constote souvent que des
tourbillons organisés subsistar
melgré le désordre dy
fluide. Un exemple
remamuoable est o Tache
Rouge de Jupiter, gigantesqu
tourbillon atmosphénique don
la taille est de F'ordre de
20000 km et qui est présent
depuis au moins trois sidcles
(A)- Des structures persistante:
analogues ont é€ reproduife:
des expériences menees
en 1988 par J. Sommerig, alc
en séjour @ l'université oy
Texas, avec une cuve en
rofation rapide (3 tours par
seconde) (B). Sur le clichs,
Pris par une comére qui fourn
avec la anve, on voit trojs
couronnes d'orifices poreux pe
lesquels entre et sort l'equ,
Ce mouvement radial
dv fuide, combiné avec le
rofation de la cuve, produit
un jet de sens oppose &
la rotation. Un teurbiflon se
constitue au bout d'un ceroin
temps, rxui est stable maigré
la turbulence. On peut
aujourdhui rendre compte de
la persisiance des tourbillons
ans les éeoulements plans,
_ grice & une théorie stafistique
.. FE S R - _ R0 | mise au point par R, Roberr,

a Funiversité de Lyen.
(Cliche A: brie/Nasa; B auteur

Des ruisseaux aux déplacements de
grandes masses d’air, la turbulence,
Mmouvement complexe et désordonpé
d’un fluide, est le Iot de presque tous les
écoulements que I'on rencontre., Mal.
gré la turbulence de I'écoulement, on
observe couramment la présence de
tourbillons plus ou moins organisés. Ce
Phénomene est encore mal compris,
mais d’importants progrés ont été réal;-
§¢s récemment dans le cas particulier de
la turbulence a deux dimensions, ¢’est-
a-dire lorsque le mouvement du fluide a
lieu dans un plan et non pas dans les
trois dimensions de I'espace ordinaire,
Un écoulement plan a l'avantage d'étre
plus simple & étudjer de fagon théo-
rique qu'un écoulement tridimension-
nel. Le cas se rencontre plus souvent
qu’on pourrait le croire : par exemple
lorsque le fluide est contenu dans un




cipient en rotation rapide, oy lorsque
“Huide est conducteur (métal liquide
1 plasma) et soumis & un champ ma-
1étique, De méme, confiner le fluide
ms une couche de faible Epaisseur
«ut également contribuer 3 maintenir
i ¢coulement plan. L'étude des mou.-
~ents de 'atmosphére et ceux des
. . constitue d’ailleurs une applica-
1 importante des théories bidimen-
snnelles, lorsque I'épaisseur des
uches fluides est négligeable par rap-
rt aux échelles horizontales considé-
H-H
wr simplifier I'étude de la turbulence
leux dimensions, on suppose géné-
ement que le fluide est incompres-
le. Dans cc cas, on montre que la
1amique de I'écoulement est entiére-
nt déterminée par une grandeur dé-
@ en chacun des points du fluide et
»elée vorticité, qui mesure le taux de
ation proprc du petit lément de
de (en termes mathématiques, la
ticité est I rotationnel de la vi-
se). L'intérét de la vorticité provient
fait qu'elle ¢st inchangée pour
que particule fluide au cours de son
uvement (il faut toutefois souligner
: Cette Dropriété n'est vraie qu'en
isence de frottements visqueux, ce
€St souvent vérifié avec unme ap-
Ximation raisonnable). Un tourbil-
se caractérise alors localement par
: vorticité Elcvée. Cette description
a tourbillon ¢lémentaire est cepen-
1 loin de suffire pour comprendre
ganisation de systémes tourbillon.
'es. En effet, on observe en général
nombreux tourbillons qui inter-
ssent de fagon extrémement
plexe, et qui peuvent éclater en de
tiples fragments. Mais au terme de
processus, I'écoulement s'organise
vent en quelques structures simples
persistent — un gros tourbillon
jue, un couple de tourbillons de
» Opposés, etc. (voir « La danse des
‘billons » dans La Recherche de fé-
r 1990).
crses expériences et situlations nu-
iques menées ces derniéres années
permis d'observer en détail ce pro-
us d'orpanisation tourbillonnaire.
si, par exemple, I'un d'entre nous,
:ollaboration avec S.D. Meyers et
-. Swinney, a 'université du Texas,
alisé en 1988 une expérience avec
cuve a’eau en rotation rapide, dans
1t de reproduire des structures ana-
es a la Tache Rouge de Jupiter®,
¢ tourbillon atmosphérique observé
:étte planéte depuis au moins trois
3 ans (fig. 1). Dans I'expérience,
ulement est pratiquement bidi-
sionne| a cause de la rotation ra-
de 1a cuve. Des tourbillons sont
luits en permanence par des
urces » (entrées u cau) et des
its » (sorties d'eau) U.5posés radia-
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lement au fond de la cuve et entretenus
par une pompe en circuit fermé. Le
mouvement radial d’évacuation de
I'eau, combiné avec Ia rotation, pro-
voque un jet de fluide qui se déplace
dans le sens opposé 4 la rotation, si I'on
s¢ place dans le repére de la cuve.

Pour un jet suffisamment énergique, un
tourbillon unique se constitue. De nou-
veaux tourbillons tournant dans le
meéme sens sont créés en permanence
par les puits, mais ils finissent toujours
par fusionner avec le tourbillon princi-
pal. Les sources, quant a elles, pro-
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Figure 2. Pour fester faur
theorie de la turbulenca
bidimensionnelle, les aueurs
ont caleuld numenquement
I'évolution d'un fluide plan dont
Vétat inifia| est constiué d'une bande
ou la vorficité {zm mesyre le teux de
rotation lacale
et de valeur o, fondjs que les deyux
régians de port et d'ouire de lo
bande se déplacent fune vers la
droite, I'guire vers la gauche. La
bande est instoble et des tourbillons
se forment (A, Les courbes
représentant ici les lignes
d'isovorticité, Un etat stationnaire et
afteint, I ol un tourbillan vnique
suosiste. Dons ceffe structure, g
afion entre (o vorficité w et fa
«fonction de courant» - {grandeur
dont les dérivdes spatiales donnent le
champ de vitesses du fluide)
vérifie trés bien la loi
prédite théoriquement (B),

duisent des tourbillons de sens
contraire, mais ceux-ci sont rapidement
disloqués dans la turbulence. Toutes
ces propriétés ressemblent 2 ce qui est
observé sur Jupiter, on des panaches
convectifs (air chaud qui monte ou air
‘froid qui descend) pourraient jouer un
role analogne aux sources et aux puits
de I'expérience.

Comment rendre compte de I'appari-
tion d'un tourbillon stable au sein d'un
¢écoulement lui-méme turbulent? La
turbulence semble jouer ici un réle de
premier plan, et cela a suggéré aux
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